Events & Seminars

2018 Apr 29

GAME THEORY AND MATHEMATICAL ECONOMICS RESEARCH SEMINAR:Michal Feldman, Tel Aviv University "Interdependent Values without Single-Crossing (Joint work with Alon Eden, Amos Fiat and Kira Goldner)"

1:30pm to 2:30pm

Location: 

Elath Hall, 2nd floor, Feldman Building, Edmond Safra Campus

Abstract:

We consider a setting where an auctioneer sells a single item to n potential agents with {\em interdependent values}. That is, each agent has her own private signal, and the valuation of each agent is a function of all n private signals. This captures settings such as valuations for oil fields, broadcast rights, art, etc.

2018 Apr 25

Special Talk : Justin Noel (University of Regensburg) - "Blue-shift and thick tensor ideals"

Lecturer: 

Justin Noel (University of Regensburg)
2:30pm to 3:30pm

Location: 

Shprinzak 27

Abstract:

I will discuss a recent generalization of Kuhn's Blue-shift theorem about Tate cohomology. Combining this result with work of Arone, Dwyer, and Lesh we resolve a conjecture of Balmer and Sanders and classify the thick tensor ideals of compact genuine $A$-spectra, where $A$ is a finite abelian group. This is joint work with Tobias Barthel, Markus Hausmann, Niko Naumann, Thomas Nikolaus, and Nathaniel Stapleton.

2018 Apr 16

Special talk: Yonatan Harpaz (Paris 13) - "Towards a universal property for Hermitian K-theory"

Lecturer: 

Yonatan Harpaz (Paris 13)
4:30pm to 5:30pm

Location: 

Ross 70

Abstract: Hermitian K-theory can be described as the "real" analogue of algebraic K-theory, and plays a motivic role similar to the role played by real topological K-theory in classical stable homotopy theory. However, the abstract framework surrounding and supporting Hermitian K-theory is less well understood than its algebraic counterpart, especially in the case when 2 is not assumed to be invertible in the ground ring.

2018 Jun 27

Analysis Seminar: Barry Simon (Caltech) "Heinävarra’s Proof of the Dobsch–Donoghue Theorem"

12:00pm to 1:00pm

Location: 

Ross Building, Room 70
Abstract: In 1934, Loewner proved a remarkable and deep theorem about matrix monotone functions. Recently, the young Finnish mathematician, Otte Heinävarra settled a 10 year old conjecture and found a 2 page proof of a theorem in Loewner theory whose only prior proof was 35 pages. I will describe his proof and use that as an excuse to discuss matrix monotone and matrix convex functions including, if time allows, my own recent proof of Loewner’s original theorem.

Pages