## Location:

Manchester Building (room 209), Jerusalem, Israel

We show that the generation problem in Thompson group F is decidable, i.e., there is an algorithm which decides if a finite set of elements of F generates the whole F. The algorithm makes use of the Stallings 2-core of subgroups of F, which can be defined in an analogue way to the Stallings core of subgroups of a free group. An application of the algorithm shows that F is a cyclic extension of a group K which has a maximal elementary amenable subgroup B. The group B is a copy of a subgroup of F constructed by Brin.