Events & Seminars

2017 Jun 15

Colloquium: Alexander Logunov (Tel Aviv), "0,01% Improvement of the Liouville property for discrete harmonic functions on Z^2"

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
Let u be a harmonic function on the plane. The Liouville theorem claims that if |u| is bounded on the whole plane, then u is identically constant. It appears that if u is a harmonic function on a lattice Z^2, and |u| < 1 on 99,99% of Z^2, then u is a constant function.   Based on a joint work(in progress) with L.Buhovsky, Eu.Malinnikova and M.Sodin.  
2017 May 04

Colloquium: Jozsef Solymozi (UBC) Erdos Lecture Series, "The sum-product problem"

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
The incompatibility of multiplicative and additive structures in various fields and rings is an important phenomena. In this talk I will talk about a special case of it. Let us consider a finite subset of integers, A. The sum set of A is the set of pairwise sums of elements of A and the product set is the set of pairwise products. Erdős and Szemeredi conjectured that either the sum set or the product set should be large, almost quadratic in size of A. The conjecture is still open. Similar questions can be asked over any ring or field.
2017 Apr 20

Colloquium - Avraham (Rami) Aizenbud (Weizmann), "Representation count as a Meeting Point for Analysis, Arithmetic, Geometry and Algebra"

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
Consider the following questions: 1. How does the volume of the set f(x_1,...,x_d) < epsilon behaves when epsilon goes to 0? 2. How does the number of solutions of the equation f(x_1,...,x_d) = 0 (mod n) behaves when n goes to infinity. I will present these and other questions which looks as if they are taken from different areas of mathematics. I'll explain the relation between those questions. Then I'll explain how this relation is used in order to show the following theorem answering a question of Larsen and Lubotzky:
2017 Mar 16

Colloquium: Oren Becker (HUJI) Tzafriri Prize Lecture "Equations in permutations and group theoretic local testability"

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
Abstract: Given two permutations A and B which "almost" commute, are they "close" to permutations A' and B' which really commute? This can be seen as a question about a property the equation XY=YX. Studying analogous problems for more general equations (or sets of equations) leads to the notion of "locally testable groups" (aka "stable groups").
2017 Jun 08

Colloquium:  Vadim Kaloshin (Maryland) - "Birkhoff Conjecture for convex planar billiards and deformational spectral rigidity of planar domains"

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
G.D.Birkhoff introduced a mathematical billiard inside of a convex domain as the motion of a massless particle with elastic reflection at the boundary. A theorem of Poncelet says that the billiard inside an ellipse is integrable, in the sense that the neighborhood of the boundary is foliated by smooth closed curves and each billiard orbit near the boundary is tangent to one and only one such curve (in this particular case, a confocal ellipse). A famous conjecture by Birkhoff claims that ellipses are the only domains with this
2017 May 18

Colloquium: Alex Eskin (Chicago) Dvoretzky Lecure Series, "Polygonal Billiards and Dynamics on Moduli Spaces."

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
Billiards in polygons can exhibit some bizarre behavior, some of which can be explained by deep connections to several seemingly unrelated branches of mathematics. These include algebraic geometry (and in particular Hodge theory), Teichmuller theory and ergodic theory on homogeneous spaces. I will attempt to give a gentle introduction to the subject. A large part of this talk will be accessible to undergraduates.
2015 Nov 25

Topology & geometry: Lara Simone Suárez (HUJI), "Exact Lagrangian cobordism and pseudo-isotopy"

11:00am to 12:45pm

Location: 

Ross building, Hebrew University (Seminar Room 70A)
Abstract: Consider two Lagrangian submanifolds L, L′ in a symplectic manifold (M,ω). A Lagrangian cobordism (W;L,L′) is a smooth cobordism between L and L′ admitting a Lagrangian embedding in (([0,1]×R)×M,(dx∧dy)⊕ω) that looks like [0,ϵ)×{1}×L and (1−ϵ,1]×{1}×L′ near the boundary. In this talk we will show that under some topological constrains, an exact Lagrangian cobordism (W;L,L′) with dim(W)>5 is diffeomorphic to [0,1]×L.
2017 Jun 01

Group actions:Lei Yang - badly approximable points on curves and unipotent orbits in homogeneous spaces

10:30am to 11:30am

We will study n-dimensional badly approximable points on curves. Given an analytic non-degenerate curve in R^n, we will show that any countable intersection of the sets of weighted badly approximable points on the curve has full Hausdorff dimension. This strengthens a previous result of Beresnevich by removing the condition on weights. Compared with the work of Beresnevich, we study the problem through homogeneous dynamics. It turns out that the problem is closely related to the study of distribution of long pieces of unipotent orbits in homogeneous spaces.
2017 Apr 20

Basic notions: Raz Kupferman (HUJI) - A geometric framework for continuum mechanics

4:00pm to 5:15pm

Abstract: The “geometrization" of mechanics (whether classical, relativistic or quantum) is almost as old as modern differential geometry, and it nowadays textbook material. The formulation of a mathematically-sound theory for the mechanics of continuum media is still a subject of ongoing research. In this lecture I will present a geometric formulation of continuum mechanics, starting with the definition of the fundamental physical observables, e.g., force, deformation, stress and traction. The outcome of this formulation is a generalization of Newton’s "F=ma” equation for continuous media.
2016 Mar 10

Colloquium: Nati Linial (Hebrew University) "Higher dimensional permutations"

3:30pm to 4:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
This is part of our ongoing effort to develop what we call "High-dimensional combinatorics". We equate a permutation with its permutation matrix, namely an nxn array of zeros and ones in which every line (row or column) contains exactly one 1. In analogy, a two-dimensional permutation is an nxnxn array of zeros and ones in which every line (row, column or shaft) contains exactly one 1. It is not hard to see that a two-dimensional permutation is synonymous with a Latin square. It should be clear what a d-dimensional permutation is, and those are still very partially understood.

Pages