2018
Oct
23

# Dynamics Lunch: Amir Algom "On \alpha \beta sets."

12:00pm to 1:00pm

## Location:

Manchester faculty club

Let $\alpha, \beta$ be elements of infinite order in the circle group. A closed set K in the circle is called an \alpha \beta set if for every x\in K either x+\alpha \in K or x+\beta \in K. In 1979 Katznelson proved that there exist non-dense \alpha \beta sets, and that there exist \alpha \beta sets of arbitrarily small Hausdorff dimension. We shall discuss this result, and a more recent result of Feng and Xiong, showing that the lower box dimension of every \alpha \beta set is at least 1/2.