Events & Seminars

2016 Jan 12

Dynamics lunch: Brandon Seward (HUJI), "Borel chromatic numbers of free groups"

12:00pm to 1:00pm

Location: 

Manchester building, Hebrew University of Jerusalem, (Coffee lounge)
Borel chromatic numbers of free groups Abstract: Recall that a coloring of a graph is a labeling of its vertices such that no pair of vertices joined by an edge have the same label. The chromatic number of a graph is the smallest number of colors for which there is a coloring. If G is a finitely generated group with generating set S, then for any free action of G on a standard Borel space X, we can place a copy of the S-Cayley graph of G onto every orbit. This results in a graph whose vertex set is X and whose edge set is Borel measurable. We can then consider Borel
2016 Mar 08

Dynamics lunch seminar: Brandon Seward (HUJI): Entropy theory for non-amenable groups (part I)

12:00pm to 1:45pm

Location: 

Ross 70
Entropy was first defined for actions of the integers by Kolmogorov in 1958 and then extended to actions of countable amenable groups by Kieffer in 1975. Recently, there has been a surge of research in entropy theory following groundbreaking work of Lewis Bowen in 2008 which defined entropy for actions of sofic groups. In this mini-course I will cover these recent developments. I will carefully define the notions of sofic entropy (for actions of sofic groups) and Rokhlin entropy (for actions of general countable groups), discuss many of the main results, and go through some of the proofs.
2016 Jan 05

Dynamics lunch: Sebastian Donoso (HUJI) - Automorphism groups of low complexity subshifts

12:00pm to 1:00pm

Location: 

Manchester building, Hebrew University of Jerusalem, (Coffee lounge)
Abstract: The automorphism group of a subshift $(X,\sigma)$ is the group of homeomorphisms of $X$ that commute with $\sigma$. It is known that such groups can be extremely large for positive entropy subshifts (like full shifts or mixing SFT). In this talk I will present some recent progress in the understanding of the opposite case, the low complexity one. I will show that automorphism groups are highly constrained for low complexity subshifts. For instance, for a minimal subshifts with sublinear complexity the automorphism group is generated by the shift and a finite set.
2016 Jan 13

Topology & geometry, Penka Vasileva (Paris Rive Gauche), "Real Gromov-Witten theory in all genera"

11:00am to 12:45pm

Location: 

Ross building, Hebrew University (Seminar Room 70A)
Abstract: We construct positive-genus analogues of Welschinger's invariants for many real symplectic manifolds, including the odd-dimensional projective spaces and the quintic threefold. Our approach to the orientability problem is based entirely on the topology of real bundle pairs over symmetric surfaces. This allows us to endow the uncompactified moduli spaces of real maps from symmetric surfaces of all topological types with natural orientations and to verify that they extend across the codimension-one boundaries of these spaces.
2015 Nov 04

Topology & geometry: Chaim Even Zohar (HUJI), "Invariants of Random Knots"

11:00am to 12:45pm

Location: 

Ross building, Hebrew University (Seminar Room 70A)
Title: Invariants of Random Knots. Abstract: Random curves in space and how they are knotted give an insight into the behavior of "typical" knots and links, and are expected to introduce the probabilistic method into the mathematical study of knots. They have been studied by biologists and physicists in the context of the structure of random polymers. There have been many results obtained via computational experiment, but few explicit computations.
2016 Jan 06

Topology & geometry, Egor Shelukhin (IAS), "The L^p diameter of the group of area-preserving diffeomorphisms of S^2"

11:00am to 12:45pm

Location: 

Ross building, Hebrew University (Seminar Room 70A)
Abstract: We use a geometric idea to give an analytic estimate for the word-length in the pure braid group of S^2. This yields that the L^1-norm (and hence each L^p-norm, including L^2) on the group of area-preserving diffeomorphisms of S^2 is unbounded. This solves an open question arising from the work of Shnirelman and Eliashberg-Ratiu. Joint work in progress with Michael Brandenbursky.

Pages