2019 Nov 07

Basic Notions: Wayne Horowitz (HUJI, Archaeology department) "Some themes in Babylonian Mathematics of Astronomy".

4:00pm to 5:15pm


Ross 70
Today, in our modern world, we perceive the physical universe in mathematical terms; whether degrees on longitude and latitude on earth, or in units of space-time beyond our earthly horizons. This talk will present two ancient cuneiform tablets from Babylonia which offer a geometric impression of the physical world as experienced by ancient Babylonians. Comparisons will be made with a range of other ancient mathematical, geographic, and astronomical materials from the cuneiform Ancient Near East.
2019 Nov 07

Groups & Dynamics seminar: Alex Margolis (Technion) “Almost normal subgroups and quotient spaces״

10:00am to 11:00am


Ross 70
Abstract: A subgroup is said to be almost normal if it is commensurable
to all of its conjugates. Even though there may not be a well-defined
quotient group, there is still a well-defined quotient space that admits
an isometric action by the ambient group. We can deduce many geometric
and algebraic properties of the ambient group by examining this action.
In particular, we will use quotient spaces to prove a relative version
of Stallings-Swan theorem on groups of cohomological dimension one. We
2019 Nov 11

Combinatorics: Barak Weiss (TAU)

10:00am to 12:00pm


C-400, CS building

Speaker: Barak Weiss (TAU)

Title:  New bounds on the covering radius of a lattice.


We obtain new upper bounds on the minimal density of lattice coverings of R^n by dilates of a convex body K. We also obtain bounds on the probability (with respect to the natural Haar-Siegel measure on the space of lattices) that a randomly chosen lattice L satisfies L + K = R^n. As a step in the proof, we utilize and strengthen results on the discrete Kakeya problem. This is joint work with Or Ordentlich and Oded Regev. 

2019 Oct 31

Groups & Dynamics seminar - Vincent Guirardel (Universite de Rennes 1) "Measure Equivalence rigidity for Out(Fn)"

10:00am to 11:00am


Ross 70
Measure equivalence of countable groups is a measure theoretic analogue
of quasi-isometry.
For example, any two lattices in the same Lie group are by definition
measure equivalent.
We prove that any countable group that is measure equivalent to Out(Fn)
is virtually isomorphic to Out(Fn). This is a joint work with Camille
2019 Oct 29

Zemer Kosloff, Finitary isomorphisms of Brownian motions

2:00pm to 3:00pm

Ornstein and Shields (Advances in Math., 10:143-146, 1973) proved that Brownian motion reflected on a bounded region is an infinite entropy Bernoulli flow and thus Ornstein theory yielded the existence of a measure-preserving isomorphism between any two such Brownian motions. For fixed h >0, we construct by elementary methods, isomorphisms with almost surely finite coding windows between Brownian motions reflected on the intervals [0, qh] for all positive rationals q. This is joint work with Terry Soo.
2019 Nov 19

Tom Meyerovitch (BGU), Efficient finitary codings by Bernoulli processes

2:00pm to 3:00pm

Recently Uri Gabor refuted an old conjecture stating that any
finitary factor of an i.i.d process is finitarly isomorphic to an
i.i.d process. Complementing Gabor's result,
in this talk, which is based on work in progress with Yinon Spinka,
we will prove that any countable-valued process which is admits a
finitary a coding by some i.i.d process furthermore admits an
$\epsilon$-efficient finitary coding, for any positive $\epsilon$.
Here an ``$\epsilon$-efficient coding'' means that the entropy