Manchester Building (Hall 2), Hebrew University Jerusalem
Title: Systems of points with Coulomb interactions Abstract: Large ensembles of points with Coulomb interactions arise in various settings of condensed matter physics, classical and quantum mechanics, statistical mechanics, random matrices and even approximation theory, and they give rise to a variety of questions pertaining to analysis, Partial Differential Equations and probability.
Manchester Building (Hall 2), Hebrew University Jerusalem
The development of symplectic topology was motivated by Hamiltonian mechanics. It has been particularly successful in addressing one specific aspect, namely fixed points and periodic points of discrete-time Hamiltonian systems. I will explain how such applications work, both in older and more recent examples.
Fixing a complete first order theory T, countable for transparency, we had known quite well for which cardinals T has a saturated model. This depends on T of course - mainly of whether it is stable/super-stable. But the older, precursor notion of having a universal notion lead us to more complicated answer, quite partial so far, e.g the strict order property and even SOP_4 lead to having "few cardinals" (a case of GCH almost holds near the cardinal). Note that eg GCH gives a complete
We discuss joint work with Douglas Arnold, Guy David, Marcel Filoche and Svitlana Mayboroda.
Consider for the operator $L = -\Delta + V$ with periodic boundary conditions, and more
generally on the manifold with or without boundary. Anderson localization, a significant feature
of semiconductor physics, says that the eigenfunctions of $L$ are exponentially localized with
high probability for many classes of random potentials $V$. Filoche and Mayboroda introduced the
Classical group representation theory deals with group actions on linear spaces; we consider group actions on compact convex spaces, preserving topological and convex structure. We focus on irreducible actions, and show that for a large class of groups - including connected Lie groups - these can be determined. There is a close connection between this and the theory of bounded harmonic functions on symmetric spaces and their boundary values.
Classical group representation theory deals with group actions on linear spaces; we consider group actions on compact convex spaces, preserving topological and convex structure. We focus on irreducible actions, and show that for a large class of groups - including connected Lie groups - these can be determined. There is a close connection between this and the theory of bounded harmonic functions on symmetric spaces and their boundary values.