2016
Jan
07

# Colloquium: Peter Ozsváth (Princeton), "Zabrodsky Lectures: Knot Floer homology"

3:30pm to 4:30pm

## Location:

Manchester Building (Hall 2), Hebrew University Jerusalem

Abstract: Knot Floer homology is an invariant for knots, defined using methods from symplectic geometry. This invariant contains topological information about the knot, such as its Seifert genus; it can be used to give bounds on the unknotting number; and it can be used to shed light on the structure of the knot concordance group. I will outline the construction and basic properties of knot Floer. Knot Floer homology was originally defined in collaboration with Zoltan Szabo, and independently by Jacob Rasmussen.