2017
Nov
01

# Jerusalem Analysis Seminar "When do the spectra of self-adjoint operators converge?" Siegfried Beckus (Technion)

12:00pm to 1:00pm

## Location:

Ross 63

Abstract:

Given a self-adjoint bounded operator, its spectrum is a compact subset of the real numbers. The space of compact subsets of the real numbers is naturally equipped with the Hausdorff metric. Let $T$ be a topological (metric) space and $(A_t)$ be a family of self-adjoint, bounded operators. In the talk, we study the (Hölder-)continuity of the map assigning to each $t\in T$ the spectrum of the operator $A_t$.