Analysis Seminar: Itay Londner (UBC) "Interpolation sets and arithmetic progressions"

Title: Interpolation sets and arithmetic progressions Abstract: Given a set S of positive measure on the unit circle, a set of integers K is an interpolation set (IS) for S if for any data {c(k)} in l^2(K) there exists a function f in L^2(S) such that its Fourier coefficients satisfy f^(k)=c(k) for all k in K. In the talk I will discuss the relationship between the concept of IS and the existence arithmetic structure in the set K, I will focus primarily on the case where K contains arbitrarily long arithmetic progressions with specified lengths and step sizes. Multidimensional analogue and recent developments on this subject will also be considered. Based on joint work with Alexander Olevskii.

Date: 

Wed, 20/02/2019 - 12:00 to 13:00

Location: 

Ross 70