Combinatorics: Chris Cox (CMU) "Nearly orthogonal vectors"

Mon, 11/06/201811:00-12:30
IIAS, Eilat hall, Feldman bldg, Givat Ram
Speaker: Chris Cox, CMU
Title -- Nearly orthogonal vectors
Abstract -- How can $d+k$ vectors in $\mathbb{R}^d$ be arranged so that they are as close to orthogonal as possible? In particular, define $\theta(d,k):=\min_X\max_{x
eq y\in X}|\langle x,y\rangle|$ where the minimum is taken over all collections of $d+k$ unit vectors $X\subseteq\mathbb{R}^d$. In this talk, we focus on the case where $k$ is fixed and $d\to\infty$. In establishing bounds on $\theta(d,k)$, we find an intimate connection to the existence of systems of ${k+1\choose 2}$ equiangular lines in $\mathbb{R}^k$. Using this connection, we are able to pin down $\theta(d,k)$ whenever $k\in\{1,2,3,7,23\}$ and establish asymptotics for general $k$. The main tool is an upper bound on $\mathbb{E}_{x,y\sim\mu}|\langle x,y\rangle|$ whenever $\mu$ is an isotropic probability mass on $\mathbb{R}^k$, which may be of independent interest. (Joint work with Boris Bukh)