Date:
Tue, 05/01/201612:00-13:00
Location:
Manchester building, Hebrew University of Jerusalem, (Coffee lounge)
Abstract: The automorphism group of a subshift $(X,\sigma)$ is the group of homeomorphisms of $X$ that commute with $\sigma$. It is known that such groups can be extremely large for positive entropy subshifts (like full shifts or mixing SFT). In this talk I will present some recent progress in the understanding of the opposite case, the low complexity one. I will show that automorphism groups are highly constrained for low complexity subshifts. For instance, for a minimal subshifts with sublinear complexity the automorphism group is generated by the shift and a finite set.