Below you can find links to recordings of FUTURE lectures of Sasha Efimov, which hopefully can also be watched in real time.
17.11.24
https://huji.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=d82bf6c0-a0a2-451c-942e-b225009e6f87
24.11.24
https://huji.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=c8a8142d-5965-4a7b-8e64-b225009e7006
1.12.24
https://huji.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=846370f8-ee71-4e57-bae1-b225009e7021
8.12.24
https://huji.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=97d1aff4-9951-4f59-9dd1-b225009e703a
15.12.24
https://huji.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=05e19343-4a3a-4a51-99d0-b225009e706a
22.12.24
https://huji.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=b19122c3-f929-4aee-88ca-b225009e7082
29.12.24
https://huji.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=482c63be-840b-4383-8b18-b225009e7099
5.1.25
https://huji.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=27d0bf07-6052-490e-acd9-b225009e70b2
12.1.25
https://huji.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=dd107fc4-0d6e-4283-8937-b225009e70cd
19.1.25
https://huji.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=2858443b-b4be-4fa2-b498-b225009e70e8
26.1.25
https://huji.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=10b93ff3-113b-4581-af64-b225009e7103
2.2.25
https://huji.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=b96408fd-633c-4946-80f8-b225009e7121
"Dualizable categories and localizing invariants"
Abstract: I will give an introduction to localizing invariants of dualizable categories. I will start with the general theory of dualizable categories, and explain some non-trivial results, such as equivalence between dualizability and flatness for a presentable stable category. Then I will give a formal definition of K-theory and more general localizing invariants of dualizable categories. We will compute the localizing invariants of various dualizable categories which come from topology and non-Archimedean analysis. These include sheaves on locally compact Hausdorff spaces and categories of nuclear modules on formal schemes. I will also explain a deep connection between the algebra of dualizable categories and the category of localizing motives -- the target of the universal finitary localizing invariant (of categories over some base). We will see that the category of localizing motives (considered as a symmetric monoidal category) is in fact rigid in the sense of Gaitsgory and Rozenblyum. If time permits, I will sketch some applications of this rigidity theorem, such as construction of refined versions of (topological) Hochschild homology.