Logic Seminar - Itaï Ben Yaacov

Randomisations, coheir sequences and NSOP1 [Joint with A Chernikov and N Ramsey] Recall that if T is a theory, then its Keisler randomisation, T^R, is the theory of spaces of random variables which take values in a model of T . It was show some time ago that if T has IP (e.g., simple unstable), then T^R has TP2, and in particular not simple. In Eilat I announced the following result [with Chernikov and Ramsey] : A. If T is NSOP1, then its randomisation T^R is NSOP1 B. If T is simple (so T^R is NSOP1), then we have the following characterisation of Kim independence over models in T^R : a \ind_M b if and only if a and b are "probabilistically independent" over M as well as independent with probability one in the sense of T . Today, some improvements to the argument allow us to prove B also when T is merely NSOP1. I shall try to explain the notions involved and the main idea of the proof of the last statement.

Date: 

Wed, 02/01/2019 - 11:00 to 13:00

Location: 

Ross 63