Number Theory: Benjamin Matschke (University of Bordeaux) "A database of rational elliptic curves with given bad reduction"

In this talk we present a database of rational elliptic curves with good reduction outside certain finite sets of primes, including the set {2, 3, 5, 7, 11}, and all sets whose product is at most 1000. In fact this is a biproduct of a larger project, in which we construct practical algorithms to solve S-unit, Mordell, cubic Thue, cubic Thue--Mahler, as well as generalized Ramanujan--Nagell equations, and to compute S-integral points on rational elliptic curves with given Mordell--Weil basis. Our algorithms rely on new height bounds, which we obtained using the method of Faltings (Arakelov, Parshin, Szpiro) combined with the Shimura--Taniyama conjecture (without relying on linear forms in logarithms), as well as several improved and new sieves. In addition we used the resulting data to motivate several conjectures and questions, such as Baker's explicit abc-conjecture, and a new conjecture on the number of S-integral points of rational elliptic curves. This is joint work with Rafael von Känel.

Date: 

Thu, 21/04/2016 - 14:00 to 15:15

Location: 

TBA