Abstract: Horospherical group actions on homogeneous spaces are famously known to be extremely rigid. In finite volume homogeneous spaces, it is a special case of Ratner’s theorems that all horospherical orbit closures are homogeneous. Rigidity further extends in rank-one to infinite volume but geometrically finite spaces. The geometrically infinite setting is far less understood.
We consider Z-covers of compact hyperbolic surfaces and show that they support quite exotic horocycle orbit closures. Surprisingly, the topology of such orbit closures delicately depends on the choice of a hyperbolic metric on the covered compact surface. In particular, our constructions provide the first examples of geometrically infinite spaces where a complete description of horocycle orbit closures is known. Based on an ongoing joint work with James Farre and Yair Minsky.
Zoom details:
Join Zoom Meeting
Meeting ID: 851 3233 4083
Passcode: 276352