Date:
Tue, 21/11/201712:00-13:30
Location:
Room 70A, Ross Building, Jerusalem, Israel
Real and complex Monge-Ampere equations play a central role in several
branches of geometry and analysis. We introduce a quaternionic version
of a Monge-Ampere equation which is an analogue of the famous Calabi
problem in the complex case. It is a non-linear elliptic equation of second
order on so called HyperKahler with Torsion (HKT) manifolds (the latter
manifolds were introduced by physicists in 1990's). While in full generality
it is still unsolved, we will describe its solution in a special case and some
partial results towards its proof in the general case. Part of the results are
joint with M. Verbitsky and E. Shelukhin.
branches of geometry and analysis. We introduce a quaternionic version
of a Monge-Ampere equation which is an analogue of the famous Calabi
problem in the complex case. It is a non-linear elliptic equation of second
order on so called HyperKahler with Torsion (HKT) manifolds (the latter
manifolds were introduced by physicists in 1990's). While in full generality
it is still unsolved, we will describe its solution in a special case and some
partial results towards its proof in the general case. Part of the results are
joint with M. Verbitsky and E. Shelukhin.