Zemer Kosloff, Finitary isomorphisms of Brownian motions

Tue, 29/10/201914:00-15:00
Ornstein and Shields (Advances in Math., 10:143-146, 1973) proved that Brownian motion reflected on a bounded region is an infinite entropy Bernoulli flow and thus Ornstein theory yielded the existence of a measure-preserving isomorphism between any two such Brownian motions. For fixed h >0, we construct by elementary methods, isomorphisms with almost surely finite coding windows between Brownian motions reflected on the intervals [0, qh] for all positive rationals q. This is joint work with Terry Soo.