Dynamical & Probability

2017 Mar 21

Dynamics seminar: Nadav Yesha (Kings College): Pair correlation for quadratic polynomials mod 1

2:00pm to 3:00pm

It is an open question whether the fractional parts of nonlinear polynomials at integers have the same fine-scale statistics as a Poisson point process. We provide explicit Diophantine conditions on the coefficients of degree 2 polynomials under which the limit of an averaged pair correlation density is consistent with the Poisson distribution, using a recent effective Ratner equidistribution result on the space of affine lattices due to Strömbergsson. This is joint work with Jens Marklof.
2016 Nov 29

Dynamics & probability: Ofir David (HUJI), Equidistribution of finite continued fractions.

2:00pm to 3:00pm

Location: 

Manchester building, Hebrew University of Jerusalem, (Room 209)
It is well known that for almost every x in (0,1) its orbit under the Gauss map, namely T(x)=1/x-[1/x], equidistributes with respect to the Gauss-Kuzmin measure. This claim is not true for all x, and in particular it is not true for rational numbers which have finite "orbits" which terminate in 0. In order to still have some equidistribution, we instead group together the orbits corresponding to p/q when q is fixed and (p,q)=1 and ask whether these finite sets equidistribute as q goes to infinity. 
2016 Dec 20

Dynamics & probability: Mike Hochman (HUJI), Dimension of Furstenberg measure of SL_2(R) random matrix products

2:00pm to 3:00pm

Location: 

Manchester building, Hebrew University of Jerusalem, (Room 209)
Given a probability measure mu on the space of 2x2 matrices, there is, under mild conditions, a unique measure nu on the space of lines which is stationary for mu. This measure is called the Furstenberg measure of mu, and is important in many contexts, from the study of random matrix products to recent work on self-affine sets and measures. Of particular importance are the smoothness and dimension of the Furstenberg measure. In this talk I will discuss joint work with Boris Solomyak in which we adapt methods from
2017 May 23

Dynamics seminar: Alex Eskin (Chicago) - On stationary measure rigidity and orbit closures for actions of non-abelian groups

2:00pm to 3:00pm

Abstract: I will describe joint work in progress with Aaron Brown, Federico Rodriguez-Hertz and Simion Filip. Our aim is to find some analogue, in the context of smooth dynamics, of Ratner's theorems on unipotent flows. This would be a (partial) generalization of the results of Benoist-Quint and my work with Elon Lindenstrauss in the homogeneous setting, the results of Brown and Rodriguez-Hertz in dimension 2, and the my results with Maryam Mirzakhani in the setting of Teichmuller dynamics.
2017 Dec 12

Dynamics Seminar: Jakub Konieczny, " Automatic sequences, nilsystems and higer order Fourier analysis."

2:15pm to 3:15pm

Location: 

Ross 70
Automatic sequences are one of the most basic models of computation, with remarkable links to dynamics, algebra and logic (among other fields). In the talk, we will explore a point of view inspired by higher order Fourier analysis. Specifically, we will investigate the behaviour of Gowers norms of some automatic sequences, and (almost) classify all automatic sequences given by generalised polynomial fomulas. The tools used will include some non-trivial results concerning dynamics of nilsystems and their connection
2017 Dec 05

Dynamics Seminar: Micheal Hochman (HUJI): Dimension of self-affine sets and measures

2:15pm to 3:15pm

Location: 

Ross 70
I will discuss joint work with Balazs Barany and Ariel Rapaport on the dimension of self-affine sets and measures. We confirm that under mild irreducibility conditions on the generating maps, the dimension is "as expected", i.e. equal to the affinity or Lyapunov dimension. This completes a program started by Falconer in the 1980s. In the first part of the talk I will explain how the Lyapunov dimension arises from Ledrappier-Young formula for self-affine sets, and then explain how additive combinatorics methods can be used to prove that this is the correct dimension.
2017 Nov 21

Dynamics Seminar: Yakov Pesin (PSU), “A geometric approach for constructing equilibrium measures in hyperbolic dynamics”

2:15pm to 3:15pm

Location: 

Ross 70
In the classical settings of Anosov diffeomorphisms or more general locally maximal hyperbolic sets I describe a new approach for constructing equilibrium measures corresponding to some continuous potentials and for studying some of their ergodic properties. This approach is pure geometrical in its nature and uses no symbolic representations of the system. As a result it can be used to effect thermodynamics formalism for systems for which no symbolic representation is available such as partially hyperbolic systems.
2017 Nov 14

Dynamics Seminar: Jie Li (HUJI), "When are all closed subsets recurrent?" ??

2:15pm to 3:15pm

Location: 

Ross 70
In this talk I will introduce the relations of rigidity, equicontinuity and pointwise recurrence between an invertible topological dynamical system (X; T) and the dynamical system (K(X); T_K) induced on the hyperspace K(X) of all compact subsets of X, and show some characterizations. Based on joint work with Piotr Oprocha, Xiangdong Ye and Ruifeng Zhang.
2017 Dec 26

Dynamics Seminar: Yuval Peres (Microsoft), "Gravitational allocation to uniform points on the sphere"

2:15pm to 3:15pm

Location: 

Ross 70
Given n uniform points on the surface of a two-dimensional sphere, how can we partition the sphere fairly among them ?    "Fairly" means that each region has the same area.   It turns out that if the given points apply a two-dimensional gravity force to the rest of the sphere, then the basins of attraction for the resulting gradient flow yield such a partition—with exactly equal areas, no matter how the points are distributed. (See the
2017 Nov 28

Dynamics Seminar: Nattalie Tamam (TAU), "Divergent trajectories in arithmetic homogeneous spaces of rational rank two"

2:15pm to 3:15pm

Location: 

Ross 70
In the theory of Diophantine approximations, singular points are ones for which Dirichlet’s theorem can be infinitely improved. It is easy to see that all rational points are singular. In the special case of dimension one, the only singular points are the rational ones. In higher dimensions, points lying on a rational hyperplane are also obviously singular. However, in this case there are additional singular points. In the dynamical setting the singular points are related to divergent trajectories.
2017 Oct 31

Dynamics Seminar: Weikun He (HUJI): Orthogonal projections of discretized sets

2:00pm to 3:00pm

Location: 

Ross 70
In this talk I will discuss a finitary version of projection theorems in fractal geometry. Roughly speaking, a projection theorem says that, given a subset in the Euclidean space, its orthogonal projection onto a subspace is large except for a small set of exceptional directions. There are several ways to quantify "large" and "small" in this statement. We will place ourself in a discretized setting where the size of a set is measured by its delta-covering number : the minimal number of balls of radius delta needed to cover the set, where delta > 0 is the scale.

Pages