The Kazhdan Sundays seminars meets on Sundays at 11:00-13:00 and 15:00-17:00 at room 70 in the Ross Building.

2019
Jul
26

# 2

8:00am to 9:00am

2019
Jul
26

8:00am to 9:00am

2019
Mar
18

Repeats every week every Monday until Mon Apr 29 2019 except Mon Apr 22 2019.

4:00pm to 6:00pm4:00pm to 6:00pm

4:00pm to 6:00pm

4:00pm to 6:00pm

4:00pm to 6:00pm

4:00pm to 6:00pm

Ross 70

Abstract. This is a joint work with Linhui Shen.
A decorated surface is an oriented surface with punctures and a finite collection of special points on the boundary, considered modulo isotopy.
Let G be a split adjoint group. We introduce a moduli space Loc(G,S) of G-local systems on a decorated surface S, which reduces to the character variety when S has no boundary, and quantize it.

2019
Jun
16

Repeats every week every Sunday until Sun Jun 23 2019 except Sun Apr 21 2019.

2:00pm to 4:00pm
Yun and Zhang compute the Taylor series expansion of an automorphic L-function over a function field, in terms of intersection pairings of certain algebraic cycles on the so-called moduli stack of shtukas. This generalizes the Waldspurger and Gross-Zagier formulas, which concern the first two coefficients.
The goal of the seminar is to develop the background necessary to state their formula, and then indicate the structure of the proof. If time allows, we may also discuss applications to the Birch and Swinnerton-Dyer conjecture for elliptic curves over function fields.

2019
Jun
16

Repeats every week every Sunday until Sat Jun 29 2019 except Sun Apr 21 2019.

11:00am to 1:00pmZlil Sela and Alex Lubotzky "Model theory of groups"
In the first part of the course we will present some of the main results in the theory of free,
hyperbolic and related groups, many of which appear as lattices in rank one simple Lie groups
We will present some of the main objects that are used in studying the theory of these groups,
and at least sketch the proofs of some of the main theorems.
In the second part of the course, we will talk about the model theory of lattices in high rank simple Lie groups.

2018
Nov
18

12:00pm to 2:00pm

Ross 70A

Abstract:
The Chabauty method is a remarkable tool which employs p-adic analitic methods (in particular Colman integration.) To study rational points on curves. However the method can be applied only when the genus of the curve in question is larger than its Mordell-Weil rank. Kim developed a sophisticated "nonableian" generalisation.
We shall present the classical methid, and give an approachable introduction to Kim's method.
I'm basically going to follow http://math.mit.edu/nt/old/stage_s18.html

2018
Dec
02

3:00pm to 5:00pm

Ross 70A

Abstract: I will discuss applications of algebraic results to combinatorics, focusing in particular on Lefschetz theorem, Decomposition theorem and Hodge Riemann relations. Secondly, I will discuss proving these results combinatorially, using a technique by McMullen and extended by de Cataldo and Migliorini. Finally, I will discuss Lefschetz type theorems beyond positivity.
Recommended prerequisites: basic commutative algebra

2018
Oct
14

3:00pm to 5:00pm

Ross 70A

Abstract: I will discuss applications of algebraic results to combinatorics, focusing in particular on Lefschetz theorem, Decomposition theorem and Hodge Riemann relations. Secondly, I will discuss proving these results combinatorially, using a technique by McMullen and extended by de Cataldo and Migliorini. Finally, I will discuss Lefschetz type theorems beyond positivity.
Recommended prerequisites: basic commutative algebra

2018
Dec
02

12:00pm to 2:00pm

Ross 70A

Abstract:
The Chabauty method is a remarkable tool which employs p-adic analitic methods (in particular Colman integration.) To study rational points on curves. However the method can be applied only when the genus of the curve in question is larger than its Mordell-Weil rank. Kim developed a sophisticated "nonableian" generalisation.
We shall present the classical methid, and give an approachable introduction to Kim's method.
I'm basically going to follow http://math.mit.edu/nt/old/stage_s18.html

2018
Dec
16

3:00pm to 5:00pm

Ross 70A

Abstract: I will discuss applications of algebraic results to combinatorics, focusing in particular on Lefschetz theorem, Decomposition theorem and Hodge Riemann relations. Secondly, I will discuss proving these results combinatorially, using a technique by McMullen and extended by de Cataldo and Migliorini. Finally, I will discuss Lefschetz type theorems beyond positivity.
Recommended prerequisites: basic commutative algebra

2018
Oct
14

12:00pm to 2:00pm

Ross 70A

Abstract:
The Chabauty method is a remarkable tool which employs p-adic analitic methods (in particular Colman integration.) To study rational points on curves. However the method can be applied only when the genus of the curve in question is larger than its Mordell-Weil rank. Kim developed a sophisticated "nonableian" generalisation.
We shall present the classical methid, and give an approachable introduction to Kim's method.
I'm basically going to follow http://math.mit.edu/nt/old/stage_s18.html

2018
Oct
28

3:00pm to 5:00pm

Ross 70A

2018
Dec
23

12:00pm to 2:00pm

Ross 70A

2018
Dec
30

3:00pm to 5:00pm

Ross 70A

2018
Oct
28

12:00pm to 2:00pm

Ross 70A

2018
Nov
11

3:00pm to 5:00pm

Ross 70A