Seminars

2018 Dec 31

NT&AG: Eyal Subag (Penn State University), "Symmetries of the hydrogen atom and algebraic families"

2:30pm to 3:30pm

Location: 

Room 70A, Ross Building, Jerusalem, Israel
The hydrogen atom system is one of the most thoroughly studied examples of a quantum mechanical system. It can be fully solved, and the main reason why is its (hidden) symmetry. In this talk I shall explain how the symmetries of the Schrödinger equation for the hydrogen atom, both visible and hidden, give rise to an example in the recently developed theory of algebraic families of Harish-Chandra modules. I will show how the algebraic structure of these symmetries completely determines the spectrum of the Schrödinger operator and sheds new light on the quantum nature of the system.
2018 Nov 21

Analysis Seminar: Asaf Shachar (HUJI) "Regularity via minors and applications to conformal maps"

12:00pm to 1:00pm

Location: 

Room 70, Ross Building
Title: Regularity via minors and applications to conformal maps. Abstract: Let f:\mathbb{R}^n \to \mathbb{R}^n be a Sobolev map; Suppose that the k-minors of df are smooth. What can we say about the regularity of f? This question arises naturally in the context of Liouville's theorem, which states that every weakly conformal map is smooth. I will explain the connection of the minors question to the conformal regularity problem, and describe a regularity result for maps with regular minors.
2018 Oct 21

Zabrodsky Lecture 2: Cohomological Field Theories

Lecturer: 

Rahul Pandharipande (ETH Zurich)
11:00am to 12:00pm

Location: 

Ross 70
Cohomological Field Theories (CohFTs) were introduced to keep track of the classes on the moduli spaces of curves defined by Gromov-Witten theories and their cousins. I will define CohFTs (following Kontsevich-Manin), explain the classification in the semisimple case of Givental-Teleman, and discuss the application to Pixton's relations which appear in the first lecture.
2018 Oct 18

Zabrodsky Lecture 1: Geometry of the moduli space of curves

Lecturer: 

Rahul Pandharipande (ETH Zurich)
2:30pm to 3:30pm

Location: 

Manchester House, Lecture Hall 2

The moduli space of curves, first appearing in the work of Riemann in the 19th century, plays an important role in geometry. After an introduction to the moduli space, I will discuss recent directions in the study of tautological classes on the moduli space following ideas and conjectures of Mumford, Faber-Zagier, and Pixton. Cohomological Field Theories (CohFTs) play an important role. The talk is about the search for a cohomology calculus for the moduli space of curves parallel to what is known for better understood geometries. My goal is to give a presentation of the progress in the past decade and the current state of the field.

2018 Oct 23

Dynamics Lunch: Amir Algom "On \alpha \beta sets."

12:00pm to 1:00pm

Location: 

Manchester faculty club
Let $\alpha, \beta$ be elements of infinite order in the circle group. A closed set K in the circle is called an \alpha \beta set if for every x\in K either x+\alpha \in K or x+\beta \in K. In 1979 Katznelson proved that there exist non-dense \alpha \beta sets, and that there exist \alpha \beta sets of arbitrarily small Hausdorff dimension. We shall discuss this result, and a more recent result of Feng and Xiong, showing that the lower box dimension of every \alpha \beta set is at least 1/2.
2018 Jun 28

Basic Notions: Barry Simon "More Tales of our Forefathers (Part II)"

4:00pm to 5:30pm

Location: 

Manchester Hall 2
This is not a mathematics talk but it is a talk for mathematicians. Too often, we think of historical mathematicians as only names assigned to theorems. With vignettes and anecdotes, I'll convince you they were also human beings and that, as the Chinese say, "May you live in interesting times" really is a curse. Among the mathematicians with vignettes are Riemann, Newton, Poincare, von Neumann, Kato, Loewner, Krein and Noether.
2018 Jun 27

Amitsur Symposium: Yael Algom-Kfir - "The metric completion of an asymmetric metric space"

4:30pm to 5:30pm

Location: 

Manchester House, Lecture Hall 2
The Teichmuller space with the Thurston metric and Outer Space with the Lipschitz metric are two examples of spaces with an asymmetric metric i.e. d(x,y) eq d(y,x). The latter case is also incomplete: There exist Cauchy sequences that do not have a limit. We develop the theory of the completion of an asymmetric space and give lots of examples. Time permitting we will describe the case of Outer Space.
2018 Jun 26

Amitsur Symposium: Alex Lubotzky - "First order rigidity of high-rank arithmetic groups"

10:00am to 11:00am

Location: 

Manchester House, Lecture Hall 2
The family of high rank arithmetic groups is a class of groups playing an important role in various areas of mathematics. It includes SL(n,Z), for n>2 , SL(n, Z[1/p] ) for n>1, their finite index subgroups and many more. A number of remarkable results about them have been proven including; Mostow rigidity, Margulis Super rigidity and the Quasi-isometric rigidity.
2018 Jun 27

Amitsur Symposium: Chloe Perin - "Forking independence in the free group"

2:00pm to 3:00pm

Location: 

Manchester House, Lecture Hall 2
Model theorists define, in structures whose first-order theory is "stable" (i.e. suitably nice), a notion of independence between elements. This notion coincides for example with linear independence when the structure considered is a vector space, and with algebraic independence when it is an algebraically closed field. Sela showed that the theory of the free group is stable. In a joint work with Rizos Sklinos, we give an interpretation of this model theoretic notion of independence in the free group using Grushko and JSJ decompositions.
2018 Jun 26

Amitsur Symposium: Aner Shalev - "The length and depth of finite groups, algebraic groups and Lie groups"

3:00pm to 4:00pm

Location: 

Manchester House, Lecture Hall 2
The length of a finite group G is defined to be the maximal length of an unrefinable chain of subgroups going from G to 1. This notion was studied by many authors since the 1940s. Recently there is growing interest also in the depth of G, which is the minimal length of such a chain. Moreover, similar notions were defined and studied for important families of infinite groups, such as connected algebraic groups and connected Lie groups.
2018 Jun 26

Amitsur Symposium: Malka Schaps - "Symmetric Kashivara crystals of type A in low rank"

11:30am to 12:30pm

Location: 

Manchester House, Lecture Hall 2
The basis of elements of the highest weight representations of affine Lie algebra of type A can be labeled in three different ways, my multipartitions, by piecewise linear paths in the weight space, and by canonical basis elements. The entire infinite basis is recursively generated from the highest weight vector of operators f_i from the Chevalley basis of the affine Lie algebra, and organized into a crystal called a Kashiwara crystal. We describe cases where one can move between the different labelings in a non-recursive fashion, particularly when the crystal has some symmetry.

Pages