Seminars

2019 Mar 07

Emmanuel Roy (Paris 13) Non-singular Poisson suspensions

2:45pm to 3:45pm

Location: 

Ross 70
Poisson suspensions are random sets of points endowed with a transformation that displaces each point according to a single transformation of the sigma-finite space where the points lie. In this ongoing work, instead of dealing with measure-preserving transformations (which is the classical case), we are going to present our attempt to explore the non-singular case. The difficulties are counterbalanced by new tools that are trivial in the measure-preserving case but highly informative in the non-singular one. We will present these tools as well as the first basic results we’ve obtained.
2019 May 26

Zlil Sela and Alex Lubotzky "Model theory of groups"

Repeats every week every Sunday until Sat Jun 29 2019 except Sun Apr 21 2019.
11:00am to 1:00pm

Zlil Sela and Alex Lubotzky "Model theory of groups" In the first part of the course we will present some of the main results in the theory of free, hyperbolic and related groups, many of which appear as lattices in rank one simple Lie groups We will present some of the main objects that are used in studying the theory of these groups, and at least sketch the proofs of some of the main theorems. In the second part of the course, we will talk about the model theory of lattices in high rank simple Lie groups.
2019 May 26

Ari Shnidman "Geometric expressions for derivatives of L-functions of automorphic forms" (after Yun and Zhang)

Repeats every week every Sunday until Sun Jun 23 2019 except Sun Apr 21 2019.
2:00pm to 4:00pm

Yun and Zhang compute the Taylor series expansion of an automorphic L-function over a function field, in terms of intersection pairings of certain algebraic cycles on the so-called moduli stack of shtukas. This generalizes the Waldspurger and Gross-Zagier formulas, which concern the first two coefficients. The goal of the seminar is to develop the background necessary to state their formula, and then indicate the structure of the proof. If time allows, we may also discuss applications to the Birch and Swinnerton-Dyer conjecture for elliptic curves over function fields.
2019 Apr 10

Set Theory Seminar - Yair Hayut (KGRC) - Partial Strong Compactness

2:00pm to 3:30pm

Location: 

Ross 63

Abstract: The ultrafilter lemma, saying that every filter can be extended to an ultrafilter, is one of the fundamental consequences of the axiom of choice. By adding closure assumptions, and asking for extension of $\kappa$-complete filters to $\kappa$-complete ultrafilters, we obtain the notion of strongly compact cardinal, which has a very high consistency strength. 
2019 Mar 14

Manuel Luethi (ETH) : Effective equidistribution of primitive rational points along long horocycle orbits and disjointness to Kloosterman sums

10:00am to 11:30am

Location: 

Ross 70
Abstract: An observation by Jens Marklof shows that the primitive rational points of a fixed denominator along the periodic unipotent orbit of volume equal to the square of the denominator equidistribute inside a proper submanifold of the modular surface. This concentration as well as the equidistribution are intimately related to classical questions of number theoretic origin. We discuss the distribution of the primitive rational points along periodic orbits of intermediate size. In this case, we can show joint equidistribution with polynomial rate in the modular surface and in the torus.
2019 Apr 03

Analysis Seminar: Malte Gerhold (Technion) "Dilations of q-commuting unitaries"

12:00pm to 1:00pm

Location: 

Ross 70
Title: Dilations of q-commuting unitaries Abstract: Let (u,v) be a pair of unitary operators on a Hilbert space H such that vu=quv for a complex number q of modulus 1. For q' another complex number of modulus 1, we determine the smallest constant c>0 for which there exists a pair of q' commuting unitaries (U,V) on a larger Hilbert space K containing H such that (u,v) is the compression of (cU,cV) to H.
2019 Mar 19

T&G: Viatcheslav Kharlamov (Strasbourg), Segre indices, Welschinger weights, and an invariant signed count of real lines on real projective hypersurfaces

1:00pm to 2:30pm

Location: 

Room 110, Manchester Building, Jerusalem, Israel
As it was observed a few years ago, there exists a certain signed count of real lines on real projective hypersurfaces of degree 2n+1 and dimension n that, contrary to the honest "cardinal" count, is independent of the choice of a hypersurface, and by this reason provides, as a consequence, a strong lower bound on the honest count. Originally, in this invariant signed count the input of a line was given by its local contribution to the Euler number of an appropriate auxiliary universal vector bundle.
2019 Apr 30

Dynamics Seminar: Iftach Dayan (TAU) "Random walks on the 1-dim torus and an application to normal numbers on fractals"

2:15pm to 3:15pm

Location: 

Ross 70
Abstract: We show that under certain conditions, a random walk on the 1-dim torus by affine expanding maps has a unique stationary measure. We then use this result to show that given an IFS of contracting similarity maps of the real line with a uniform contraction ratio 1/D, where D is some integer > 1, under some suitable condition, almost every point in the attractor of the given IFS (w.r.t. a natural measure) is normal to base D.
2019 May 14

Dynamics Seminar: Rene Ruhr (Technion) Counting Saddle Connection on Translation surfaces.

2:00pm to 3:00pm

Abstract: A collection of polygons with the property that to each side one can find another side parallel to it can be endowed with a translation surface structure by glueing along those edges. This means that the closed surfaces obtained carries a flat metric outside finitely many conical singularities. Geodesics (which are straight lines) connecting such singularities are called saddle connections.
2019 Mar 13

Set Theory Seminar - Tom Benhamou (TAU), "Projections of Tree-Prikry forcing"

2:00pm to 3:30pm

Location: 

Ross 63
Title: Projections of Tree-Prikry forcing. Abstract: Gitik, Kanovei and Koepke proved that if U is a normal measure over \kappa then the projections of Prikry forcing with U is essentially Prikry forcing with U. The questions remains regarding to the Tree-Prikry forcing. Gitik and B. showed that without normality, it is possible that a Tree-Prikry generic sequence adds a Add(\kappa,1) generic function. In this talk we wish to examine which forcing notions can be projections of Tree-Prikry forcing under different large cardinals assumptions.
2019 Mar 27

Set Theory Seminar - Ralf Schindler (Munster), "Paradoxical" sets with no well-ordering of the reals

2:00pm to 3:30pm

Location: 

Ross 63
Title: "Paradoxical" sets with no well-ordering of the reals Abstract: By a Hamel basis we mean a basis for the reals, R, construed as a vecor space over the field of rationals. In 1905, G. Hamel constructed such a basis from a well-ordering of R. In 1975, D. Pincus and K. Prikry asked "whether a Hamel basis exists in any model in which R cannot be well ordered." About two years ago, we answered this positively in a joint paper with M. Beriashvili, L. Wu, and L. Yu. In more recent joint work, additionally with J. Brendle and F. Castiblanco we constructed a model of
2019 Mar 20

Set Theory Seminar - Tom Benhamou (TAU) (part II)

2:00pm to 3:30pm

Location: 

Ross 63
Title: Projections of Tree-Prikry forcing. Abstract: Gitik, Kanovei and Koepke proved that if U is a normal measure over \kappa then the projections of Prikry forcing with U is essentially Prikry forcing with U. The questions remains regarding to the Tree-Prikry forcing. Gitik and B. showed that without normality, it is possible that a Tree-Prikry generic sequence adds a Add(\kappa,1) generic function. In this talk we wish to examine which forcing notions can be projections of Tree-Prikry forcing under different large cardinals assumptions.
2019 May 01

Set Theory Seminar - Thomas Gilton (UCLA): Abraham-Rubin-Shelah Open Coloring Axiom with a large continuum

2:00pm to 3:30pm

Location: 

Ross 63

Abstract: In their 1985 paper, the above three authors introduced a consistent generalization of Ramsey's theorem to pairs of countable ordinals, which we abbreviate as $OCA_{ARS}$. This axiom asserts that for any continuous coloring (with respect to an appropriate topology) of pairs of countable ordinals, there is a decomposition of $\omega_1$ into countably-many homogeneous sets. The key to their argument is to construct Preassignments of Colors.

Pages