Seminars

2017 Mar 22

Logic seminar - Chris Lambie-Hanson, "Trees with ascent paths"

4:00pm to 6:00pm

Location: 

Ross 70
Abstract: The notion of an ascent path through a tree, isolated by Laver, is a generalization of the notion of a cofinal branch and, in many cases, the existence of an ascent path through a tree provides a concrete obstruction to the tree being special. We will discuss some recent results regarding ascent paths through kappa-trees, where kappa > omega_1 is a regular cardinal. We will discuss the consistency of the existence or non-existence of a special mu^+-tree with a cf(mu)-ascent path, where mu is a singular cardinal.
2017 Apr 24

Logic seminar

Repeats every week every Monday until Sun May 21 2017 except Mon May 01 2017.
12:00pm to 2:00pm

12:00pm to 2:00pm
12:00pm to 2:00pm

Location: 

Ross 63
We will take a close look at the first few steps of the construction of the Bristol model, which is a model intermediate to L[c], for a Cohen real c, satisfying V eq L(x) for all x.
2018 May 01

Logic Seminar - Asaf Karagila - "What can you say about critical cardinals?"

1:30pm to 3:30pm

Location: 

Math 209
We isolate the property of being a critical point, and prove some basic positive properties of them. We will also prove a lifting property that allows lifting elementary embedding to symmetric extensions, and outline a construction that shows that it is consistent that a successor of a critical cardinal is singular. This is a recent work with Yair Hayut.
2017 Nov 22

Logic Seminar - Yair Hayut - "Chang's Conjecture at many cardinals simultaneously"

11:00am to 1:00pm

Location: 

Math 209







Chang's Conjecture is a strengthening of Lowenheim-Skolem-Tarski theorem. While Lowenheim-Skolem-Tarski theorem is provable in ZFC, any instance of Chang's Conjecture is independent with ZFC and has nontrivial consistency strength. Thus, the question of how many instances of Chang's Conjecture can consistently hold simultaneously is natural.


I will talk about some classical results on the impossibility of some instances of Chang's Conjecture and present some results from a joint work with Monroe Eskew.
2018 Jun 27

Logic Seminar - Shahar Oriel - "Erdos-Hajnal property for stable graphs"

11:00am to 1:00pm

Location: 

Ross 63
We will follow a short note by Artem Chernikov & Sergei Starchenko: "A note on the Erdos-Hajnal Conjecture." “In this short note we provide a relatively simple proof of the Erd ̋os–Hajnal conjecture for families of finite (hyper-)graphs without the m-order property. It was originally proved by M. Malliaris and S. Shelah”
2017 Jun 28

Logic seminar - Shimon Garti, "Tiltan"

4:00pm to 6:00pm

Location: 

Ross 70
We shall try to prove some surprising (and hopefully, correct) theorems about the relationship between the club principle (Hebrew: tiltan) and the splitting number, with respect to the classical s at omega and the generalized s at supercompact cardinals.
2016 Dec 27

Special logic seminar - Itaï BEN YAACOV, "Baby version of the asymptotic volume estimate"

10:00am to 12:00pm

Location: 

Shprinzak 102
I'll show how the Vandermonde determinant identity allows us to estimate the volume of certain spaces of polynomials in one variable (or rather, of homogeneous polynomials in two variables), as the degree goes to infinity. I'll explain what this is good for in the context of globally valued fields, and, given time constraints, may give some indications on the approach for the "real inequality" in higher projective dimension.
2018 Jun 13

Logic Seminar - Nick Ramsey - "Keisler measures in simple theories"

11:00am to 1:00pm

Location: 

Ross 63
Keisler measures were introduced in the late 80's by Keisler but they became central objects in model theory only recently with the development of NIP theories. This led naturally to the question of whether there might be a parallel theory of measures in other tame classes, especially in the simple theories where pseudofinite counting measures supply natural and interesting examples. We will describe some first steps toward establishing such a theory, based on Keisler randomizations and the theory of independence for NSOP1 theories in continuous logic.
2017 Nov 08

Logic Seminar- Itai Ben Yaacov - "Reconstruction for non-aleph0-categorical theories?"

11:00am to 1:00pm

Location: 

Math 209
It is a familiar fact (sometimes attributed to Ahlbrandt-Ziegler, though it is possibly older) that two aleph0-categorical theories are bi-interpretable if and only if their countable models have isomorphic topological isomorphism groups. Conversely, groups arising in this manner can be given an abstract characterisation, and a countable model of the theory (up to bi-interpretation, of course) can be reconstructed.
2016 Dec 28

Logic seminar - Matthew Foreman, "Better lucky than smart: realizing a quasi-generic class of measure preserving transformations as diffeomorphisms"

4:00pm to 6:00pm

Location: 

Ross 70
Better lucky than smart: realizing a quasi-generic class of measure preserving transformations as diffeomorphisms. Speaker: Matthew Foreman Abstract: In 1932, von Neumann proposed classifying measure preserving diffeomorphisms up to measure isomorphism. Joint work with B. Weiss shows this is impossible in the sense that the corresponding equivalence relation is not Borel; hence impossible to capture using countable methods.
2018 May 21

Combinatorics: Daniel Kalmanovich and Or Raz (HU) "2 talks back-to-back"

11:00am to 12:30pm

Location: 

IIAS, Eilat hall, Feldman Building, Givat Ram
First speaker: Daniel kalmanovich, HU Title: On the face numbers of cubical polytopes Abstract: Understanding the possible face numbers of polytopes, and of subfamilies of interest, is a fundamental question. The celebrated g-theorem, conjectured by McMullen in 1971 and proved by Stanley (necessity) and by Billera and Lee (sufficiency) in 1980-81, characterizes the f-vectors of simplicial polytopes.
2018 Jun 05

Tom Meyerovitch (BGU): On expansivness, topological dimension and mean dimesnion

2:15pm to 3:15pm

Location: 

Ross 70
Expansivness is a fundamental property of dynamical systems. It is sometimes viewed as an indication to chaos. However, expansiveness also sets limitations on the complexity of a system. Ma\~{n}'{e} proved in the 1970’s that a compact metric space that admits an expansive homeomorphism is finite dimensional. In this talk we will discuss a recent extension of Ma\~{n}'{e}’s theorem for actions generated by multiple homeomorphisms, based on joint work with Masaki Tsukamoto. This extension relies on a notion called “topological mean dimension’’ , introduced by Gromov and

Pages