Seminars

2018 Apr 29

GAME THEORY AND MATHEMATICAL ECONOMICS RESEARCH SEMINAR:Michal Feldman, Tel Aviv University "Interdependent Values without Single-Crossing (Joint work with Alon Eden, Amos Fiat and Kira Goldner)"

1:30pm to 2:30pm

Location: 

Elath Hall, 2nd floor, Feldman Building, Edmond Safra Campus

Abstract:

We consider a setting where an auctioneer sells a single item to n potential agents with {\em interdependent values}. That is, each agent has her own private signal, and the valuation of each agent is a function of all n private signals. This captures settings such as valuations for oil fields, broadcast rights, art, etc.

2018 May 08

Dynamics Seminar: Tsviqa Lakrec (Huji)

12:00pm to 1:00pm

Location: 

Manchester 209
Consider a simple random walk on $\mathbb{Z}$ with a random coloring of $\mathbb{Z}$. Look at the sequence of the first $N$ steps taken and colors of the visited locations. From it, you can deduce the coloring of approximately $\sqrt{N}$ integers. Suppose an adversary may change $\delta N$ entries in that sequence. What can be deduced now? We show that for any $\theta<0.5,p>0$, there are $N_{0},\delta_{0}$ such that if $N>N_{0}$ and $\delta<\delta_{0}$ then with probability $>1-p$ we can reconstruct the coloring of $>N^{\theta}$ integers.
2018 Jun 19

Tomasz Rzepecki (Uniwersytet Wrocławski): Topological dynamics and Galois groups in model theory

2:15pm to 3:15pm

Location: 

Ross 70
In recent years, topological dynamics have become an important tool in model theory. I will talk about some topological dynamical results from my PhD thesis about the so-called group-like equivalence relations. I plan to give a glimpse of the motivations in model theory (mostly related to the model-theoretic Galois groups and connected components of definable groups) and to show some ideas of the proofs. I will briefly recall the required notions from topological dynamics. Some knowledge of model theory will help to understand the motivations, but otherwise, it will not be necessary.
2018 May 29

Dynamics Lunch: Matan Seidel (Huji) - "The Mass Transport Principle in Percolation Theory"

12:00pm to 1:00pm

Location: 

Manchester lounge
The Mass Transport Principle is a useful technique that was introduced to the study of automorphism-invariant percolations by Häggström in 1997. The technique is a sort of mass conservation principle, that allows us to relate random properties (such as the random degree of a vertex) to geometric properties of the graph. I will introduce the principle and the class of unimodular graphs on which it holds, as well as a few of its applications.
2018 Jun 27

Analysis Seminar: Barry Simon (Caltech) "Heinävarra’s Proof of the Dobsch–Donoghue Theorem"

12:00pm to 1:00pm

Location: 

Ross Building, Room 70
Abstract: In 1934, Loewner proved a remarkable and deep theorem about matrix monotone functions. Recently, the young Finnish mathematician, Otte Heinävarra settled a 10 year old conjecture and found a 2 page proof of a theorem in Loewner theory whose only prior proof was 35 pages. I will describe his proof and use that as an excuse to discuss matrix monotone and matrix convex functions including, if time allows, my own recent proof of Loewner’s original theorem.
2018 May 29

Yuri Lima (Paris 11): Symbolic dynamics for non-uniformly hyperbolic systems with singularities

2:15pm to 3:15pm

Location: 

Ross 70
Symbolic dynamics is a tool that simplifies the study of dynamical systems in various aspects. It is known for almost fifty years that uniformly hyperbolic systems have ``good'' codings. For non-uniformly hyperbolic systems, Sarig constructed in 2013 ``good'' codings for surface diffeomorphisms. In this talk we will discuss some recent developments on Sarig's theory, when the map has discountinuities and/or critical points, such as multimodal maps of the interval and Bunimovich billiards.
2018 May 08

Dynamics Seminar: Yinon Spinka (TAU): Finitary codings of Markov random fields

2:15pm to 4:15pm

Location: 

Ross 70
Let X be a stationary Z^d-process. We say that X is a factor of an i.i.d. process if there is a (deterministic and translation-invariant) way to construct a realization of X from i.i.d. variables associated to the sites of Z^d. That is, if there is an i.i.d. process Y and a measurable map F from the underlying space of Y to that of X, which commutes with translations of Z^d and satisfies that F(Y)=X in distribution. Such a factor is called finitary if, in order to determine the value of X at a given site, one only needs to look at a finite (but random) region of Y.

Pages