Events & Seminars

2020 Jun 03

Analysis Seminar: Victor Ivrii (Toronto) "Complete Spectral Asymptotics for Periodic and Almost Periodic Perturbations of Constant Coefficients Operators and Bethe-Sommerfeld Conjecture in Semiclassical Settings"

12:00pm to 1:00pm


Ross 70

Complete Spectral Asymptotics for Periodic and Almost Periodic Perturbations of Constant Coefficients Operators and Bethe-Sommerfeld Conjecture in Semiclassical Settings

Under certain assumptions, we derive a complete semiclassical asymptotics of aspectral function of the constant coecient scalar operator perturbed by almostperiodic smaller operator. In particular, a com-
plete semiclassical asymptotics of the integrated density of states also holds.
2020 Jan 29

Logic Seminar - Yatir Halevi

9:45am to 11:45am


Ross building - Room 63
Yatir Halevi will speal about Coloring Stable Graphs.

Title: Coloring Stable Graphs

Abstract: Given a graph G=(V,E), a coloring of G in \kappa colors is a
map c:V\to \kappa in which adjacent vertices are colored in different
colors. The chromatic number of G is the smallest such \kappa.
We will briefly review some questions and conjectures on the chromatic
number of infinite graphs and will mainly concentrate on the strong
form of Taylor's conjecture:
2020 Jan 22

Logic Seminar - Yuval Dor

11:00am to 1:00pm


Ross building - Room 63
Yuval Dor will speal about Transformal Valued Fields.

Abraham Robinson characterized the existentially closed valued fields as those which are algebraically closed and nontrivially valued. This theorem is somewhat surprising: it makes no assumption on the topology of the field other than the fact that it is not discrete, and immediately implies a strong from of the Nullstellensatz, asserting that the only obstruction to the solvability of a system of polynomial equations in a neighborhood of a point is the obvious one.
2020 Jan 30

Groups & Dynamics Seminar. Chloe Perin (HUJI): Homogeneity of torsion-free hyperbolic groups

10:00am to 11:00am


Ross 70 a
A countable group is said to be homogeneous if whenever tuples of elements u, v satisfy the same first-order formulas there is an automorphism of the group sending one to the other. We had previously proved with Rizos Sklinos that free groups are homogeneous, while most surface groups aren't. In a joint work with Ayala Dente-Byron, we extend this to give a complete characterization of torsion-free hyperbolic groups that are homogeneous.
2020 Mar 16

NT Seminar - Sam Chow - CANCELLED!!!

2:30pm to 3:30pm


Ross 70

Title. Dyadic approximation in the Cantor set

Abstract. We investigate the approximation rate of a typical element of the Cantor set by dyadic rationals. This is a manifestation of the times two times three phenomenon, and is joint work with Demi Allen and Han Yu.
2020 Jan 19

Game theory seminar: Computational Design Principles of Cognition (Yuval Hart)

2:00pm to 3:00pm


Elath Hall, 2nd floor, Feldman Building
Driven by recent technological advancements, behavior and brain activity can now be measured at an unprecedented resolution and scale. This “big-data” revolution is akin to a similar revolution in biology. In biology, the wealth of data allowed systems-biologists to uncover the underlying design principles that are shared among biological systems. In my studies, I apply design principles from systems-biology to cognitive phenomena. In my talk I will demonstrate this approach in regard to creative search.
2020 Jan 14

T&G: Pavel Etingof (MIT), Short star-products for filtered quantizations

1:00pm to 2:30pm


Room 209, Manchester Building, Jerusalem
Motivated by three-dimensional N=4 superconformal field theory, in 2016 Beem, Peelaers and Rastelli considered short even star-products for homogeneous symplectic singularities (more precisely, hyper-Kahler cones) and conjectured that they exist and depend on finitely many parameters. We prove the dependence on finitely many parameters in general and existence for a large class of examples, using the connection of this problem with zeroth Hochschild homology of quantizations suggested by Kontsevich.
2020 Jan 30

Basic Notions: Cy Maor (HUJI) "Infinite dimensional Riemannian geometry in hydrodynamics and shape analysis".

4:00pm to 5:15pm


Ross 70
In the mid-18th century,Euler derived his famous equations of motion of an incompressible fluid, one ofthe most studied equations in hydrodynamics. More than 200 years later, in1966, Arnold observed that they are, in fact, geodesic equations on the(infinite dimensional) Lie group of volume-preserving diffeomorphisms of amanifold, endowed with a certain right-invariant Riemannian metric.