Events & Seminars

2017 Jan 22

Special colloquium: Laci Babai (Chicago) "Graph isomorphism and coherent configurations: The Split-or-Johnson routine"

4:00pm to 6:00pm

Location: 

Rothberg B220 (CS bldg)
Coherent configurations" (CCs) are certain highly regular colorings of the directed complete graph. The concept goes back to Schur (1933) who used it to study permutation groups, and has subsequently been rediscovered in other contexts (block designs,
association schemes, graph canonization).
CCs are the central concept in the "Split-or-Johnson" (SoJ) procedure, one of the main combinatorial components of the speaker's recent algorithm to test graph isomorphism.
2015 Oct 29

Colloquium: Vincent Guirardel (Universite de Renne 1), "Avatars of small cancellation"

2:30pm to 3:30pm

Title: Avatars of small cancellation
Abstract:
In general, given a finite presentation of a group, it is very difficult (in fact algorithmically impossible) to understand the group it defines. Small cancellation theory was developped as a combinatorial condition on a presentation that allows one to understand the group it represents. This very flexible construction has many applications to construct examples of groups with specific features.
2017 Sep 14

Colloquium: Kate Juschenko (Northwestern University) - "Cycling amenable groups and soficity"

2:30pm to 3:30pm

Location: 

IIAS hall, Hebrew University Jerusalem
I will give introduction to sofic groups and discuss a possible strategy towards finding a non-sofic group. I will show that if the Higman group were sofic, there would be a map from Z/pZ to itself, locally like an exponential map, satisfying a rather strong recurrence property. The approach to (non)-soficity is based on the study of sofic representations of amenable subgroups of a sofic group. This is joint work with Harald Helfgott.
2017 Aug 09

T&G: Peter Ozsvath (Princeton), Bordered methods in knot Floer homology

12:00pm to 1:00pm

Location: 

Room 70A, Ross Building, Jerusalem, Israel
Knot Floer homology is an invariant for knots in the three-sphere defined using methods from symplectic geometry. I will describe a new algebraic formulation of this invariant which leads to a reasonably efficient computation of these invariants. This is joint work with Zoltan Szabo.

Pages