Events & Seminars

2015 Nov 04

Topology & geometry: Chaim Even Zohar (HUJI), "Invariants of Random Knots"

11:00am to 12:45pm

Location: 

Ross building, Hebrew University (Seminar Room 70A)
Title: Invariants of Random Knots. Abstract: Random curves in space and how they are knotted give an insight into the behavior of "typical" knots and links, and are expected to introduce the probabilistic method into the mathematical study of knots. They have been studied by biologists and physicists in the context of the structure of random polymers. There have been many results obtained via computational experiment, but few explicit computations.
2016 Jan 06

Topology & geometry, Egor Shelukhin (IAS), "The L^p diameter of the group of area-preserving diffeomorphisms of S^2"

11:00am to 12:45pm

Location: 

Ross building, Hebrew University (Seminar Room 70A)
Abstract: We use a geometric idea to give an analytic estimate for the word-length in the pure braid group of S^2. This yields that the L^1-norm (and hence each L^p-norm, including L^2) on the group of area-preserving diffeomorphisms of S^2 is unbounded. This solves an open question arising from the work of Shnirelman and Eliashberg-Ratiu. Joint work in progress with Michael Brandenbursky.
2016 Feb 24

Topology & geometry, Mikhail Katz (Bar Ilan University), "Determinantal variety and bi-Lipschitz equivalence"

11:00am to 12:45pm

Location: 

Ross building, Hebrew University (Seminar Room 70A)
Abstract: The unit circle viewed as a Riemannian manifold has diameter (not 2 but rather) π, illustrating the difference between intrinsic and ambient distance. Gromov proceeded to erase the difference by pointing out that when a Riemannian manifold is embedded in L∞, the intrinsic and the ambient distances coincide in a way that is as counterintuitive as it is fruitful. Witness the results of his 1983 Filling paper.
2015 Dec 02

Topology & geometry: Pavel Paták (HUJI), "Homological non-embeddability and a qualitative topological Helly-type theorem"

11:00am to 12:45pm

Location: 

Ross building, Hebrew University (Seminar Room 70A)
Abstract: The classical theorem of Van Kampen and Flores states that the k-dimensional skeleton of (2k+2)-dimensional simplex cannot be embedded into R2k. We present a version of this theorem for chain maps and as an application we prove a qualitative topological Helly-type theorem. If we define the Helly number of a finite family of sets to be one if all sets in the family have a point in common and as the largest size of inclusion-minimal subfamily with empty intersection otherwise, the theorem can be stated as follows:
2016 Dec 15

Groups and dynamics: Yair Hartman (Northwestern) - Percolation, Invariant Random Subgroups and Furstenberg Entropy

10:30am to 11:30am

Location: 

Ross 70
Abstract: In this talk I'll present a joint work with Ariel Yadin, in which we solve the Furstenberg Entropy Realization Problem for finitely supported random walks (finite range jumps) on free groups and lamplighter groups. This generalizes a previous result of Bowen. The proof consists of several reductions which have geometric and probabilistic flavors of independent interests. All notions will be explained in the talk, no prior knowledge of Invariant Random Subgroups or Furstenberg Entropy is assumed.
2015 Dec 31

Groups & dynamics: Thang Neguyen (Weizmann) - Rigidity of quasi-isometric embeddings

10:00am to 11:00am

Location: 

Ross building, Hebrew University of Jerusalem, (Room 70)
To every topological group, one can associate a unique universal minimal flow (UMF): a flow that maps onto every minimal flow of the group. For some groups (for example, the locally compact ones), this flow is not metrizable and does not admit a concrete description. However, for many "large" Polish groups, the UMF is metrizable, can be computed, and carries interesting combinatorial information. The talk will concentrate on some new results that give a characterization of metrizable UMFs of Polish groups. It is based on two papers, one joint
2016 Mar 31

Groups & dynamics: Paul Nelson (ETH) - Quantum variance on quaternion algebras

10:00am to 11:00am

Location: 

Ross building, Hebrew University of Jerusalem, (Room 70)
To every topological group, one can associate a unique universal minimal flow (UMF): a flow that maps onto every minimal flow of the group. For some groups (for example, the locally compact ones), this flow is not metrizable and does not admit a concrete description. However, for many "large" Polish groups, the UMF is metrizable, can be computed, and carries interesting combinatorial information. The talk will concentrate on some new results that give a characterization of metrizable UMFs of Polish groups. It is based on two papers, one joint
2016 Nov 24

Groups and dynamics- Oren Becker

10:30am to 11:30am

Location: 

Ross 70
Speaker: Oren Becker Title: Locally testable groups Abstract: Arzhantseva and Paunescu [AP2015] showed that if two permutations X and Y in Sym(n) nearly commute (i.e. XY is close to YX), then the pair (X,Y) is close to a pair of permutations that really commute.
2016 Jan 07

Groups & dynamics: Mark Shusterman (TAU) - Ranks of subgroups in boundedly generated groups

10:00am to 11:00am

Location: 

Ross building, Hebrew University of Jerusalem, (Room 70)
To every topological group, one can associate a unique universal minimal flow (UMF): a flow that maps onto every minimal flow of the group. For some groups (for example, the locally compact ones), this flow is not metrizable and does not admit a concrete description. However, for many "large" Polish groups, the UMF is metrizable, can be computed, and carries interesting combinatorial information. The talk will concentrate on some new results that give a characterization of metrizable UMFs of Polish groups. It is based on two papers, one joint

Pages