Events & Seminars

2019 Aug 15

Analysis Seminar: Mira Shamis (London) "Applications of the Ky Fan inequality to random (and almost periodic) operators"

12:00pm to 1:00pm


Ross 70
Title: Applications of the Ky Fan inequality to random (and almost periodic) operators
Abstract: We shall discuss the Ky Fan inequality for the eigenvalues of the sum of two Hermitian matrices. As an application, we shall derive a sharp version of a recent result of Hislop and Marx pertaining to the dependence of the integrated density of states of random Schroedinger operators on the distribution of the potential. Time permitting, we shall also discuss an application to quasiperiodic operators.
2019 Aug 07

NT & AG Seminar: Sandeep Varma "Bernstein projectors for SL(2)"

2:00pm to 3:00pm


Ross 70
Let G be the group SL(2) over a finite extension F of Q_p, p odd. For a fixed r ≥ 0, we identify the elements of the Bernstein center of G supported in the Moy-Prasad G-domain G_{r^+}, by characterizing them spectrally.
We study the behavior of convolution with such elements on orbital integrals of functions in C^∞_c(G(F)), proving results in the spirit of semisimple descent.
These are ‘depth r versions’ of results proved for general reductive groups by J.-F. Dat, R. Bezrukavnikov, A. Braverman and D. Kazhdan.
2020 Jan 16

Colloquium Dvoretzky lecture: Sylvia Serfaty (NYU): Systems of points with Coulomb interactions

2:30pm to 3:30pm


Manchester Building (Hall 2), Hebrew University Jerusalem

Title: Systems of points with Coulomb interactions
Abstract:  Large ensembles of points with Coulomb interactions arise in various settings of condensed matter physics, classical and quantum mechanics, statistical mechanics, random matrices and even approximation theory, and they give rise to a variety of questions pertaining to analysis, Partial Differential Equations and probability.
2019 Jun 27

Groups and Dynamics seminar: Asaf Katz (Chicago) - An application of Margulis' inequality to effective equidistribution.

11:30am to 12:45pm

Abstract: Ratner's celebrated equidistribution theorem states that the trajectory of any point in a homogeneous space under a unipotent flow is getting equidistributed with respect to some algebraic measure. In the case where the action is horospherical, one can deduce an effective equidistribution result by mixing methods, an idea that goes back to Margulis' thesis.