2017
Dec
07

# Groups & dynamics: Doron Puder (TAU)

10:30am to 11:30am

2017
Dec
07

10:30am to 11:30am

2015
Dec
03

10:00am to 11:20am

Ross building, Hebrew University of Jerusalem, (Room 70)

Abstract:
Borel studied the topological group actions that are
possible on locally symmetric manifolds. In these two talks, I will
explain Borel's work and interpret these results as a type of rigidity
statement very much related to the well-known Borel conjecture of high
dimensional topology. In particular, I will give the characterization
of locally symmetric manifolds (of dimension not 4) which have a
unique maximal conjugacy of finite group of orientation preserving
homeomorphisms, due to Cappell, Lubotzky and myself. We will then

2017
May
25

10:00am to 11:00am

Ross 70

In this talk I will provide some counter-examples for quantitative multiple
recurrence problems for systems with more than one transformation. For
instance, I will show that there exists an ergodic system
$(X,\mathcal{X},\mu,T_1,T_2)$ with two commuting transformations such that
for every $\ell < 4$ there exists $A\in \mathcal{X}$ such that
\[ \mu(A\cap T_1^n A\cap T_2^n A) < \mu(A)^{\ell} \]
for every $n \in \mathbb{N}$.
The construction of such a system is based on the study of ``big'' subsets
of $\mathbb{N}^2$ and $\mathbb{N}^3$ satisfying combinatorial properties.

2017
Dec
21

10:30am to 11:30am

Ross 70

Abstract:
In 2009 the speaker and Vladimir Markovic constructed nearly geodesic surfaces in a given closed hyperbolic 3-manifold M. The construction proceeded by taking all "good pants" in M and matching them at their boundaries to produce a closed surface. I will describe this construction, as well as a new construction with Alexander Wright, of a nearly geodesic surface in the case where M has a cusp. If time permits, I will discuss the potential applications of this construction to higher rank nonuniform lattices and mapping class groups.

2015
Dec
10

10:00am to 11:00am

Ross building, Hebrew University of Jerusalem, (Room 70)

Abstract
Borel studied the topological group actions that are
possible on locally symmetric manifolds. In these two talks, I will
explain Borel's work and interpret these results as a type of rigidity
statement very much related to the well-known Borel conjecture of high
dimensional topology. In particular, I will give the characterization
of locally symmetric manifolds (of dimension not 4) which have a
unique maximal conjugacy of finite group of orientation preserving
homeomorphisms, due to Cappell, Lubotzky and myself. We will then

2017
Oct
31

2018
Jan
02

12:00pm to 1:00pm

An M-dependent process X(n) on the integers, is a process for which every event concerning with X(-1),X(-2),... is independent from every event concerning with X(M),X(M+1),...
Such processes play an important role both as scaling limits of physical systems and as a tool in approximating other processes.
A question that has risen independently in several contexts is:
"is there an M dependent proper colouring of the integer lattice for some finite M?"

2017
Jun
06

12:00pm to 1:00pm

Manchester building, Hebrew University of Jerusalem, (Coffee lounge)

A dimension gap for continued fractions with independent digits (after Kifer, Peres and Weiss)

2017
Dec
05

12:00pm to 1:00pm

Abstract: It was noticed in the 30's by Doeblin & Forte that Markov
operators with "chains with complete connections"
act quasi-compactly on the Lipschitz functions. These are operators
like the transfer operators of certain expanding
C^2 interval maps (e.g. the square of Gauss map).
It is folklore that stochastic processes generated by smooth
observables under these maps satisfy many of the results
of "classical probability theory" (e.g. CLT, Chernoff inequality).
I'll try to explain some of this in a "lunchtime" mode.

2017
Nov
21

2017
Oct
24

2017
Dec
26

2015
Dec
08

12:00pm to 1:00pm

Manchester building, Hebrew University of Jerusalem, (Coffee lounge)

2018
Jan
16

2016
Nov
15

12:00pm to 1:00pm