Events & Seminars

2018 Apr 16

Special talk: Yonatan Harpaz (Paris 13) - "Towards a universal property for Hermitian K-theory"

Lecturer: 

Yonatan Harpaz (Paris 13)
4:30pm to 5:30pm

Location: 

Ross 70

Abstract: Hermitian K-theory can be described as the "real" analogue of algebraic K-theory, and plays a motivic role similar to the role played by real topological K-theory in classical stable homotopy theory. However, the abstract framework surrounding and supporting Hermitian K-theory is less well understood than its algebraic counterpart, especially in the case when 2 is not assumed to be invertible in the ground ring.

2018 Jun 27

Analysis Seminar: Barry Simon (Caltech) "Heinävarra’s Proof of the Dobsch–Donoghue Theorem"

12:00pm to 1:00pm

Location: 

Ross Building, Room 70
Abstract: In 1934, Loewner proved a remarkable and deep theorem about matrix monotone functions. Recently, the young Finnish mathematician, Otte Heinävarra settled a 10 year old conjecture and found a 2 page proof of a theorem in Loewner theory whose only prior proof was 35 pages. I will describe his proof and use that as an excuse to discuss matrix monotone and matrix convex functions including, if time allows, my own recent proof of Loewner’s original theorem.
2018 May 29

Yuri Lima (Paris 11): Symbolic dynamics for non-uniformly hyperbolic systems with singularities

2:15pm to 3:15pm

Location: 

Ross 70
Symbolic dynamics is a tool that simplifies the study of dynamical systems in various aspects. It is known for almost fifty years that uniformly hyperbolic systems have ``good'' codings. For non-uniformly hyperbolic systems, Sarig constructed in 2013 ``good'' codings for surface diffeomorphisms. In this talk we will discuss some recent developments on Sarig's theory, when the map has discountinuities and/or critical points, such as multimodal maps of the interval and Bunimovich billiards.
2018 May 08

Dynamics Seminar: Yinon Spinka (TAU): Finitary codings of Markov random fields

2:15pm to 4:15pm

Location: 

Ross 70
Let X be a stationary Z^d-process. We say that X is a factor of an i.i.d. process if there is a (deterministic and translation-invariant) way to construct a realization of X from i.i.d. variables associated to the sites of Z^d. That is, if there is an i.i.d. process Y and a measurable map F from the underlying space of Y to that of X, which commutes with translations of Z^d and satisfies that F(Y)=X in distribution. Such a factor is called finitary if, in order to determine the value of X at a given site, one only needs to look at a finite (but random) region of Y.
2018 Apr 12

Special talk: Yonatan Harpaz (Paris 13) - "Small extensions in algebra and topology"

Lecturer: 

Yonatan Harpaz (Paris 13)
1:15pm to 2:15pm

Location: 

Ross 70
Abstract: In this talk, we will discuss the notion of small extensions in its various incarnations, from torsors under abelian groups to square-zero extensions of algebras. We will then focus on the somewhat less familiar case of small extensions of ∞-categories. Our main goal is to make this abstract concept concrete and intuitive through a variety of examples. In particular, we will advocate the point of view that small extensions of  ∞-categories offer a unifying perspective in understanding many constructions appearing in obstruction, classification, and deformation theoretic problems
2017 Nov 22

Logic Seminar - Yair Hayut - "Chang's Conjecture at many cardinals simultaneously"

11:00am to 1:00pm

Location: 

Math 209







Chang's Conjecture is a strengthening of Lowenheim-Skolem-Tarski theorem. While Lowenheim-Skolem-Tarski theorem is provable in ZFC, any instance of Chang's Conjecture is independent with ZFC and has nontrivial consistency strength. Thus, the question of how many instances of Chang's Conjecture can consistently hold simultaneously is natural.


I will talk about some classical results on the impossibility of some instances of Chang's Conjecture and present some results from a joint work with Monroe Eskew.
2017 Apr 19

Logic seminar- Shimon Garti, "Forcing axioms and saturated ideals"

4:00pm to 6:00pm

Location: 

Ross 70
Abstract: Paul Larson proved that under Martin's axiom and large continuum there are no Laver ideals over aleph_1. He asked about weakly Laver ideals under some forcing axiom. We shall address two issues: 1. Under Martin's axiom and the continuum is above aleph_2, there are no weakly Laver ideals over aleph_1.. 2. Under Baumgartner's axiom, the parallel of Larson's theorem holds for ideals over aleph_2.
2016 Dec 27

Special logic seminar - Itaï BEN YAACOV, "Baby version of the asymptotic volume estimate"

10:00am to 12:00pm

Location: 

Shprinzak 102
I'll show how the Vandermonde determinant identity allows us to estimate the volume of certain spaces of polynomials in one variable (or rather, of homogeneous polynomials in two variables), as the degree goes to infinity. I'll explain what this is good for in the context of globally valued fields, and, given time constraints, may give some indications on the approach for the "real inequality" in higher projective dimension.
2018 Jan 24

Logic Seminar - Vadim Kulikov - Borel Reducibility in Generalised Descriptive Set Theory"

11:00am to 1:00pm

Location: 

Ross 63
I will review some recent results in the Borel reducibility on uncountable cardinals of the Helsinki logic group. Borel reducibility on the generalised Baire space \kappa^\kappa for uncountable \kappa is defined analogously to that for \kappa=\omega. One of the corollaries of this work is that under some mild cardinality assumptions on kappa, if T1 is classifiable and T2 is unstable or superstable with OTOP, then the ISOM(T1) is continuously reducible ISOM(T2) and ISOM(T2) is not Borel reducible to ISOM(T1).
2017 Nov 08

Logic Seminar- Itai Ben Yaacov - "Reconstruction for non-aleph0-categorical theories?"

11:00am to 1:00pm

Location: 

Math 209
It is a familiar fact (sometimes attributed to Ahlbrandt-Ziegler, though it is possibly older) that two aleph0-categorical theories are bi-interpretable if and only if their countable models have isomorphic topological isomorphism groups. Conversely, groups arising in this manner can be given an abstract characterisation, and a countable model of the theory (up to bi-interpretation, of course) can be reconstructed.

Pages