Ross building, Hebrew University (Seminar Room 70A)
Abstract:
Derived algebraic geometry is a nonlinear analogue of homological algebra, in which one keeps track of syzygies among the relations among the defining equations of a variety, and higher analogues. It has important applications to intersection theory and enumerative geometry.
Abstract: Let \Sigma be a compact connected oriented 2-manifold of genus g , and let p be a point on \Sigma. We define a space S_g(t) consisting of certain irreducible representations of the fundamental group of \Sigma - { p } , modulo conjugation by SU(N).
Knot Floer homology is an invariant for knots in the three-sphere defined using methods from symplectic geometry. I will describe a new algebraic formulation of this invariant which leads to a reasonably efficient computation of these invariants. This is joint work with Zoltan Szabo.
Abstract: Bordered Floer homology is an invariant for three-manifolds with boundary, defined in collaboration with Robert Lipshitz and Dylan Thurston. The invariant associates a DG algebra to a parameterized surface, and a module over that algebra to a three-manifold with boundary. I will explain how methods from bordered Floer homology can be used to give a tidy description of knot Floer homology. This is joint work with Zoltan Szabo.
Consider a sequence of random walks on $\mathbb{Z}/p\mathbb{Z}$ with symmetric generating sets $A= A(p)$. I will describe known and new results regarding the mixing time and cut-off. For instance, if the sequence $|A(p)|$ is bounded then the cut-off phenomenon does not occur, and more precisely I give a lower bound on the size of the cut-off window in terms of $|A(p)|$. A natural conjecture from random walk on a graph is that the total variation mixing time is bounded by maximum degree times diameter squared.
Title: Equidistribution of expanding translates of curves in homogeneous spaces and Diophantine approximation.
Abstract:
We consider an analytic curve $\varphi: I \rightarrow \mathbb{M}(n\times m, \mathbb{R}) \hookrightarrow \mathrm{SL}(n+m, \mathbb{R})$ and embed it into some homogeneous space $G/\Gamma$, and translate it via some diagonal flow
Manchester building, Hebrew University of Jerusalem, (Room 209)
Title: Indistinguishability of trees in uniform spanning forests
Abstract:
The uniform spanning forest (USF) of an infinite connected graph G is the weak limit of the uniform spanning tree measure taken on exhausting finite subgraphs of G. It is easy to see that it is supported on spanning graphs of G with no cycles, but it need not be connected. Indeed, a classical result of Pemantle ('91) asserts that when G=Zd, the USF is almost surely a connected tree if and only if d=1,2,3,4.
Manchester building, Hebrew University of Jerusalem, (Room 209)
Title: Positive entropy actions of countable groups factor onto Bernoulli shifts
Abstract: I will prove that if a free ergodic action of a countable group has positive Rokhlin entropy (or, less generally, positive sofic entropy) then it factors onto all Bernoulli shifts of lesser or equal entropy. This extends to all countable groups the well-known Sinai factor theorem from classical entropy theory. As an application, I will show that for a large
class of non-amenable groups, every positive entropy free ergodic action satisfies the measurable von Neumann conjecture.
We consider (complex) Gaussian analytic functions on a horizontal strip, whose distribution is invariant with respect to horizontal shifts (i.e., "stationary"). Let N(T) be the number of zeroes in [0,T] x [a,b]. We present an extension of a result by Wiener, concerning the existence and characterization of the limit N(T)/T as T approaches infinity, as well as characterize the growth of the variance of N(T).
Manchester building, Hebrew University of Jerusalem, (Room 209)
Title: Arithmetic of Double Torus Quotients and the Distribution of Periodic Torus Orbits
Abstract:
In this talk I will describe some new arithmetic invariants for pairs of torus orbits on inner forms of PGLn and SLn. These invariants allow us to significantly strengthen results towards the equidistribution of packets of periodic torus orbits on higher rank S-arithmetic quotients. An important aspect of our method is that it applies to packets of periodic orbits of maximal tori which are only partially split.
A signature of chaotic behavior in dynamical systems is sensitive dependence on initial conditions, and Lyapunov exponents measure the rates at which nearby orbits diverge. One might expect that geometric expansion or stretching in a map would lead to positive Lyapunov exponents. This, however, is very difficult to prove - except for maps with invariant cones (or a priori separation of expanding and contracting directions).
For a given deterministic measure we construct a random measure on the Brownian path that has expectation the given measure. For the construction we introduce the concept of weak convergence of random measures in probability. The machinery can be extended to more general sets than Brownian path.