Events & Seminars

2017 May 04

Colloquium: Jozsef Solymozi (UBC) Erdos Lecture Series, "The sum-product problem"

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
The incompatibility of multiplicative and additive structures in various fields and rings is an important phenomena. In this talk I will talk about a special case of it. Let us consider a finite subset of integers, A. The sum set of A is the set of pairwise sums of elements of A and the product set is the set of pairwise products. Erdős and Szemeredi conjectured that either the sum set or the product set should be large, almost quadratic in size of A. The conjecture is still open. Similar questions can be asked over any ring or field.
2015 Nov 25

Topology & geometry: Lara Simone Suárez (HUJI), "Exact Lagrangian cobordism and pseudo-isotopy"

11:00am to 12:45pm

Location: 

Ross building, Hebrew University (Seminar Room 70A)
Abstract: Consider two Lagrangian submanifolds L, L′ in a symplectic manifold (M,ω). A Lagrangian cobordism (W;L,L′) is a smooth cobordism between L and L′ admitting a Lagrangian embedding in (([0,1]×R)×M,(dx∧dy)⊕ω) that looks like [0,ϵ)×{1}×L and (1−ϵ,1]×{1}×L′ near the boundary. In this talk we will show that under some topological constrains, an exact Lagrangian cobordism (W;L,L′) with dim(W)>5 is diffeomorphic to [0,1]×L.
2017 Jun 01

Group actions:Lei Yang - badly approximable points on curves and unipotent orbits in homogeneous spaces

10:30am to 11:30am

We will study n-dimensional badly approximable points on curves. Given an analytic non-degenerate curve in R^n, we will show that any countable intersection of the sets of weighted badly approximable points on the curve has full Hausdorff dimension. This strengthens a previous result of Beresnevich by removing the condition on weights. Compared with the work of Beresnevich, we study the problem through homogeneous dynamics. It turns out that the problem is closely related to the study of distribution of long pieces of unipotent orbits in homogeneous spaces.
2017 Apr 20

Basic notions: Raz Kupferman (HUJI) - A geometric framework for continuum mechanics

4:00pm to 5:15pm

Abstract: The “geometrization" of mechanics (whether classical, relativistic or quantum) is almost as old as modern differential geometry, and it nowadays textbook material. The formulation of a mathematically-sound theory for the mechanics of continuum media is still a subject of ongoing research. In this lecture I will present a geometric formulation of continuum mechanics, starting with the definition of the fundamental physical observables, e.g., force, deformation, stress and traction. The outcome of this formulation is a generalization of Newton’s "F=ma” equation for continuous media.
2016 May 05

Colloquium: Daniel Wise (McGill) "The Cubical Route to Understanding Groups"

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
Abstract: Cube complexes have come to play an increasingly central role within geometric group theory, as their connection to right-angled Artin groups provides a powerful combinatorial bridge between geometry and algebra. This talk will introduce nonpositively curved cube complexes, and then describe the developments that have recently culminated in the resolution of the virtual Haken conjecture for 3-manifolds, and simultaneously dramatically extended our understanding of many infinite groups.
2015 Nov 12

Colloquium: Michael Krivelevich (Tel Aviv), "Positional games"

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
Title: Positional games Positional games are a branch of combinatorics, researching a variety of two-player games, ranging from popular recreational games such as Tic-Tac-Toe and Hex, to purely abstract games played on graphs and hypergraphs. It is closely connected to many other combinatorial disciplines such as Ramsey theory, extremal graph and set theory, probabilistic combinatorics, and to computer science.
2016 Dec 15

Colloquium: Cy Maor (Toronto) "Asymptotic rigidity of manifolds"

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
Liouville's rigidity theorem (1850) states that a map $f:\Omega\subset R^d \to R^d$ that satisfies $Df \in SO(d)$ is an affine map. Reshetnyak (1967) generalized this result and showed that if a sequence $f_n$ satisfies $Df_n \to SO(d)$ in $L^p$, then $f_n$ converges to an affine map. In this talk I will discuss generalizations of these theorems to mappings between manifolds and sketch the main ideas of the proof (using techniques from the calculus of variations and from harmonic analysis). Finally, I will describe how these rigidity questions are related to weak
2016 Jan 07

Colloquium: Peter Ozsváth (Princeton), "Zabrodsky Lectures: Knot Floer homology"

3:30pm to 4:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
Abstract: Knot Floer homology is an invariant for knots, defined using methods from symplectic geometry. This invariant contains topological information about the knot, such as its Seifert genus; it can be used to give bounds on the unknotting number; and it can be used to shed light on the structure of the knot concordance group. I will outline the construction and basic properties of knot Floer. Knot Floer homology was originally defined in collaboration with Zoltan Szabo, and independently by Jacob Rasmussen.
2016 May 26

Colloquium: John Lott (Berkeley) "3D Ricci flow since Perelman"

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
I’ll talk about the advances and open questions in three dimensional Ricci flow. Topics include the finiteness of the number of surgeries, the long-time behavior and flowing through singularities. No prior knowledge of Ricci flow will be assumed.
2016 Dec 01

Colloquium: Shaul Zemel (Hebrew University) "Actions of Groups on Compact Riemann Surfaces"

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
A compact Riemann surface gives rise to several families of vector spaces, associated to divisors on the Riemann surface. A finite group G of automorphisms acts on the spaces associated with invariant divisors, and a natural question is to characterize the resulting representations of G. We show how a very simple normalization for the invariant divisors can help in answering this question in a very direct manner, and if time permits present some applications.
2015 Dec 24

Colloquium: Yakov Eliashberg (Stanford) ״Crossroads of symplectic rigidity and flexibility״

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
Abstract: The development of flexible and rigid sides of symplectic and contact topology towards each other shaped this subject since its inception, and continues shaping its modern development. In the talk I will discuss the history of this struggle and describe recent breakthroughs on the flexible side.

Pages