Events & Seminars

2018 Jun 26

Amitsur Symposium: Lev Glebsky - "Approximations of groups by finite and linear groups"

4:30pm to 5:30pm


Manchester House, Lecture Hall 2
The sofic groups and hyperlinear groups are groups approximable by finite symmetric
and by unitary groups, respectively. I recall their definitions and discuss why those classes of groups are interesting. Then I consider approximations by other classes of groups and review some results, including rather recent ones by N. Nikolov, J. Schneider, A.Thom, .
If time permits I'll speak about stability and its relations with approximability.
2018 Jun 26

Amitsur Symposium: Arye Juhasz - "On the center of Artin groups"

2:00pm to 3:00pm


Manchester House, Lecture Hall 2
Let A be an Artin group. It is known that if A is spherical (of finite type) and irreducible (not a direct sum), then it has infinite cyclic center.
It is conjectured that all other irreducible Artin groups have trivial center. I prove this conjecture under a stronger assumption that not being spherical namely, if there is a standard generator which is not contained in any 3-generated spherical standard parabolic subgroup. The main tool is relative presentations of Artin groups.
2018 Jun 25

HD-Combinatorics Special Day: "Quantum ergodicity and spectral theory with a discrete flavour" (organized by Elon Lindenstrauss and Shimon Brooks)

(All day)


Feldman Building, Givat Ram
Title for the day: "Quantum ergodicity and spectral theory with a discrete flavour"

9:00-10:50: Shimon Brooks (Bar Ilan), "Delocalization of Graph Eigenfunctions"
14:00-15:50: Elon Lindenstrauss (HUJI), "Quantum ergodicity on graphs and beyond"

See also the Basic Notions by Elon Lindenstrauss @ Ross 70 (16:30).

Abstract for morning session:
2018 Jun 25

NT&AG: Gal Porat (HUJI), "Induction and Restriction of $(\varphi,\Gamma)$-Modules"

2:00pm to 3:00pm


Room 70A, Ross Building, Jerusalem, Israel
Abstract. Let L be a non-archimedean local field of characteristic 0. In this talk we will present a variant of the theory of (\varphi,\Gamma)-modules associated with Lubin-Tate groups, developed by Kisin and Ren, in which we replace the Lubin-Tate tower by the maximal abelian extension \Gamma=Gal (L^ab/L). This variation allows us to compute the functors of induction and restriction for (\varphi,\Gamma)-modules, when the ground field L changes. If time permits, we will also discuss the Cherbonnier-Colmez theorem on overconvergence in our setting.
Joint work with Ehud de Shalit.
2018 Jun 19

T&G: Yaron Ostrover (Tel Aviv), Quantitative symplectic geometry in the classical phase space.

12:00pm to 1:30pm


Room 110, Manchester Buildling, Jerusalem, Israel
We shall discuss several topics regarding symplectic measurements in the classical phase space. In particular: Viterbo's volume-capacity conjecture and its relation with Mahler conjecture, the symplectic size of random convex bodies, the EHZ capacity of convex polytopes (following the work of Pazit Haim-Kislev), and (if time permits) also computational complexity aspects of estimating symplectic capacities.
2018 Jun 18

HD-Combinatorics: Special day on sparsification (by Ilan Newman and Yuri Rabinovich)

(All day)


Eilat Hall, Feldman Building, Givat Ram

Special day on sparsification
Speakers: Ilan Newman and Yuri Rabinovich.

Part I:   10:30 - 12:30
Part II:  14:00 - 15:50

Abstract for the day:
Time permitting, we plan to discuss the following topics (in this order):

* Additive Sparsification and VC dimension
* Multiplicative Sparsification
* Examples: cut weights, cut-dimension of L_1 metrics, general metrics,
                    and their high-dimensional analogues

2018 Jun 14

Basic Notions: Elon Lindenstrauss (HUJI) : Effective Equidistribution of closed orbits, property tau, and other applications

4:00pm to 5:15pm


Ross 70
Ergodic theoretic methods in the context of homogeneous dynamics have been highly successful in number theoretic and other applications. A lacuna of these methods is that usually they do not give rates or effective estimates. Einseidler, Venkatesh and Margulis proved a rather remarkable quantitative equidistribution result for periodic orbits of semisimple groups in homogenous spaces that can be viewed as an effective version of a result of Mozes and Shah based on Ratner's measure classification theorem.
2018 Jun 25

Elon Lindenstrauss (HUJI) - Effective Equidistribution and property tau

4:30pm to 5:45pm

This is the second of two lectures on the paper Einseidler,, Margulis, Mohammadi and Venkatesh In this second lecture I will explain how the authors obtain using property tau (uniform spectral gap for arithmetic quotient) quantitaive equidistribution results for periodic orbits of maximal semisimple groups. Surprisingly, one can then use this theorem to establish property tau...
2018 Dec 12

CS Theory -- Erdős Lecture II: Counting contigency tables


Igor Pak (UCLA)
10:30am to 12:00pm


Rothberg (CS building) B-220

Contingency tables are matrices with fixed row and column sums.  They are in natural correspondence with bipartite multi-graphs with fixed degrees and can also be viewed as integer points in transportation polytopes.  Counting and random sampling of contingency tables is a fundamental problem in statistics which remains unresolved in full generality.  

In the talk, I will review both asymptotic and MCMC approaches, and then present a new Markov chain construction which provably works for sparse margins.  I conclude with some curious experimental results and conjectures. 

2019 May 01

Analysis Seminar: Nir Lev (BIU) "On tiling the real line by translates of a function"

12:00pm to 1:00pm


Ross 70
Title: On tiling the real line by translates of a function
Abstract: If f is a function on the real line, then a system
of translates of f is said to be a << tiling >> if it constitutes
a partition of unity. Which functions can tile the line by
translations, and what can be said about the structure of the
tiling? I will give some background on the problem and present
our results obtained in joint work with Mihail Kolountzakis.
2018 Jun 12

T&G: Sara Tukachinsky (IAS), An enhanced quantum product and its associativity relation

1:00pm to 2:30pm


Room 110, Manchester Buildling, Jerusalem, Israel
Open Gromov-Witten (OGW) invariants count pseudoholomorphic maps from a Riemann surface with boundary to a symplectic manifold, with constraints that make sure the moduli space of solutions is zero dimensional. In joint work with J. Solomon (2016-2017), we defined OGW invariants in genus zero under cohomological conditions. In this talk, also based on joint work with J. Solomon, I will describe a family of PDEs satisfied by the generating function of our invariants. We call this family the open WDVV equations.