2017
Nov
16

# Events & Seminars

2017
Nov
23

2017
Dec
11

2017
Nov
06

# High Dimensional Expanders and Group Stability, Alex Lubotkzy

9:00am to 11:00am

## Location:

Room 130

In the first talk we gave a brief outline of the contents of the course. In the rest of the semester we will get deeper into some topics. In the coming lecture ( and the next one) we will discuss Kazhdan property T and its connections with expanders and with first cohomology groups. No prior knowledge will be assumed.

2017
Nov
06

2018
Jan
10

# Logic Seminar - Alex Lubotzky - "First order rigidity of high-rank arithmetic groups"

11:00am to 1:00pm

## Location:

Ross 63

The family of high rank arithmetic groups is a class of groups playing an important role in various areas of mathematics. It includes SL(n,Z), for n>2 , SL(n, Z[1/p] ) for n>1, their finite index subgroups and many more.
A number of remarkable results about them have been proven including; Mostow rigidity, Margulis Super rigidity and the Quasi-isometric rigidity.

2018
Jan
15

# NT&AG: Dmitry Vaintrob (IAS), "The log-coherent category and Hodge theory of open varieties"

2:00pm to 3:00pm

## Location:

Room 70A, Ross Building, Jerusalem, Israel

I will talk about a new Abelian category associated to an open variety with normal-crossings (or more generally, logarithmic) choice of compactification, which behaves in remarkable (and remarkably nice) ways with respect to changes of compactification and duality, and which first appeared in work on mirror symmetry.

2018
Jan
01

# NT&AG: Alexander Polischchuk (University of Oregon), "Associative Yang-Baxter equation and related 1-CY categories"

3:00pm to 4:00pm

## Location:

Room 70A, Ross Building, Jerusalem, Israel

The talk is based on the joint work with Yanki Lekili. The associative Yang-Baxter equation
is a quadratic equation related to both classical and quantum Yang-Baxter equations. It appears naturally in connection with triple Massey products in the derived category of
coherent sheaves on elliptic curve and its degenerations. We show that all of its nondegenerate trigonometric solutions are obtained from Fukaya categories of some noncompact surfaces. We use this to prove that any two simple vector bundles on a cycle of projective lines are related by a sequence of spherical twists.

2017
Dec
13

# Logic seminar - Omer Mermelstein - "Template structures for the class of Hrushovski ab initio geometries"

11:00am to 1:00pm

## Location:

Math 209

Zilber's trichotomy conjecture, in modern formulation, distinguishes three flavours of geometries of strongly minimal sets --- disintegrated/trivial, modular, and the geometry of an ACF. Each of these three flavours has a classic ``template'' --- a set with no structure, a projective space over a prime field, and an algebraically closed field, respectively. The class of ab initio constructions with which Hrushovski refuted the conjecture features a new flavour of geometries --- non-modular, yet prohibiting any algebraic structure.

2017
Dec
28

# Amitsur Algebra: Ari Shnidman (Boston College), "The behavior of rational points in one-parameter families"

12:00pm to 1:00pm

## Location:

Ross 70, Math Building, Givat Ram

Title: The behavior of rational points in one-parameter families
Abstract: How often does a "random" algebraic plane curve f(x,y) = 0
have a solution with rational coordinates? In one-parameter "twist"
families of elliptic curves, Goldfeld conjectured that there should be
a rational point exactly half of the time. Recent progress towards
this conjecture makes use of Selmer groups, and I'll explain the
geometric idea underlying their construction. I'll also describe
results for families of curves of higher genus, and abelian varieties
of higher dimension.

2017
Jul
26

# Logic seminar - Andrés Villaveces, "Around non-elementary dependence"

2:00pm to 4:00pm

## Location:

Ross 70

Dependent theories have now a very solid and well-established collection of results and applications. Beyond first order, the development of "dependency" has been rather scarce so far. In addition to the results due to Kaplan, Lavi and Shelah (dependent diagrams and the generic pair conjecture), I will speak on a few lines of current research around the extraction of indiscernibles for dependent diagrams and on various forms on dependence for abstract elementary classes. This is joint work with Saharon Shelah.

2017
Dec
06

# Logic Seminar - Daoud Siniora - "Automorphism groups of homogeneous structures"

11:00am to 1:00pm

## Location:

Math 209

A special class among the countably infinite relational structures is the class of homogeneous structures. These are the structures where every finite partial isomorphism extends to a total automorphism. A countable set, the ordered rationals, and the random graph are all homogeneous.

2017
May
29

# Logic seminar - Ur Yaar, "A Toy Multiverse"

2:00pm to 4:00pm

## Location:

Shprinzak 101

We will present briefly the "multiverse view" of set theory, advocated by Hamkins, that there are a multitude of set-theoretic universes, and not one background universe, and his proposed "Multiverse Axioms". We will then move on to present the main result of Gitman and Hamkins in their paper "A natural model of the multiverse axioms" - that the countable computably saturated models of ZFC form a "toy model" of the multiverse axioms.

2017
Nov
22

# Logic Seminar - Yair Hayut - "Chang's Conjecture at many cardinals simultaneously"

11:00am to 1:00pm

## Location:

Math 209

Chang's Conjecture is a strengthening of Lowenheim-Skolem-Tarski theorem. While Lowenheim-Skolem-Tarski theorem is provable in ZFC, any instance of Chang's Conjecture is independent with ZFC and has nontrivial consistency strength. Thus, the question of how many instances of Chang's Conjecture can consistently hold simultaneously is natural.

I will talk about some classical results on the impossibility of some instances of Chang's Conjecture and present some results from a joint work with Monroe Eskew.

2016
Dec
27

# Special logic seminar - Itaï BEN YAACOV, "Baby version of the asymptotic volume estimate"

10:00am to 12:00pm

## Location:

Shprinzak 102

I'll show how the Vandermonde determinant identity allows us to
estimate the volume of certain spaces of polynomials in one variable
(or rather, of homogeneous polynomials in two variables), as the degree
goes to infinity.
I'll explain what this is good for in the context of globally valued
fields, and, given time constraints, may give some indications on the
approach for the "real inequality" in higher projective dimension.