Events & Seminars

2018 Jun 14

Colloquium - Zuchovitzky lecture: Lior Yanovski (HUJI) "Homotopy cardinality and the l-adic analyticity of Morava-Euler characteristic"

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
A finite set has an interesting numerical invariant - its cardinality. There are two natural generalizations of "cardinality" to a (homotopy) invariant for (suitably finite) spaces. One is the classical Euler characteristic. The other is the Baez-Dolan "homotopy cardinality". These two invariants, both natural from a certain perspective, seem to be very different from each other yet mysteriously connected. The question of the precise relation between them was popularized by John Baez as one of the "mysteries of counting".
2016 Apr 21

Amitsur Algebra: Konstantin Golubev (HU)

12:00pm to 1:15pm

Location: 

Manchester Building (room 209), Jerusalem, Israel
Title: Spectral approach to the chromatic number of a simplicial complex
Abstract: In this talk, we'll summarize results obtained in recent years in a pursuit for spectral bounds for the chromatic number of a simplicial complex. As the principal application, we'll show that Ramanujan complexes serve as family of explicitly constructed complexes with large girth and large chromatic number. We'll also present other results, such as a bound on the expansion and a bound on the mixing of a complex, and refer to open questions.
2018 Jun 28

Colloquium: Barry Simon (Caltech) - "More Tales of our Forefathers"

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
This is not a mathematics talk but it is a talk for mathematicians. Too often, we think of historical mathematicians as only names assigned to theorems. With vignettes and anecdotes, I'll convince you they were also human beings and that, as the Chinese say, "May you live in interesting times" really is a curse. Among the mathematicians with vignettes are Riemann, Newton, Poincare, von Neumann, Kato, Loewner, Krein and Noether. This talk is in two parts. The second part will be given from 4:00 to 5:00 (not 5:30) in the Basic Notions seminar.
2016 Jun 16

Amitsur Algebra: Gili Golan, "The generation problem in Thompson group F"

12:00pm to 1:15pm

Location: 

Manchester Building (room 209), Jerusalem, Israel
We show that the generation problem in Thompson group F is decidable, i.e., there is an algorithm which decides if a finite set of elements of F generates the whole F. The algorithm makes use of the Stallings 2-core of subgroups of F, which can be defined in an analogue way to the Stallings core of subgroups of a free group. An application of the algorithm shows that F is a cyclic extension of a group K which has a maximal elementary amenable subgroup B. The group B is a copy of a subgroup of F constructed by Brin.
2016 Apr 07

Amitsur Algebra: Ayala Byron (HUJI), "Definable fields in the free group"

12:00pm to 1:15pm

Location: 

Manchester Building (room 209), Jerusalem, Israel
Abstract: In the early 2000s Sela proved that all non-abelian free groups share a common first-order theory. Together with R. Sklinos, we use tools developed in his work to show that no infinite field is definable in this theory. In this talk we will survey the line of proof for a formal solution theorem for a simple sort of definable sets, that have a structure of a hyperbolic tower, and use it to characterize definable sets that do not carry a definable structure of an abelian group.
2018 Apr 25

Analysis Seminar: Latif Eliaz "The Essential Spectrum of Schroedinger Operators on Graphs"

12:00pm to 1:00pm

Location: 

Room 70, Ross Building

It is known that the essential spectrum of aSchrödinger operator H on\ell^2(\mathbb{N})  is equal to the union of the spectra of right limits ofH. The naturalgeneralization of this relation to \mathbb{Z}^n  is known to hold as well.In this talk we study thepossibility of generalizing this characterization of \sigma_{ess}(H)  tographs. We show that the general statement fails, while presenting natural families of models where it still holds. 

2018 Apr 12

Colloquium: Ron Peretz (Bar Ilan) - "Repeated Games with Bounded Memory - the Entropy Method"

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
Abstract:
In the past two decades the entropy method has been successfully employed in the study of repeated games. I will present a few results that demonstrate the relations between entropy and memory. More specifically: a finite game is repeated (finitely or infinitely) many times. Each player $i$ is restricted to strategies that can recall only the last $k_i$ stages of history. The goal is to characterize the (asymptotic) set of equilibrium payoffs. Such a characterization is available for two-player games, but not for three players or more.
Related papers:
2018 Jan 21

NT&AG: Daniel Disegni (University of Paris-Sud 11), On the p-adic Bloch-Kato conjecture for Hilbert modular forms

3:00pm to 4:00pm

Location: 

Room 70A, Ross Building, Jerusalem, Israel
The Birch and Swinnerton-Dyer conjecture predicts that the group of rational points on an elliptic curve E over Q has rank equal to the order of vanishing of the L-function of E. Generalisations of this conjecture to motives M were formulated by Belinson and Bloch-Kato. I will explain a proof of a version of the Bloch-Kato conjecture in p-adic coefficients, when M is attached to a p-ordinary Hilbert modular form of any weight and the order of vanishing is 1.

Pages