Events & Seminars

2017 Jun 01

Group actions:Lei Yang - badly approximable points on curves and unipotent orbits in homogeneous spaces

10:30am to 11:30am

We will study n-dimensional badly approximable points on curves. Given an analytic non-degenerate curve in R^n, we will show that any countable intersection of the sets of weighted badly approximable points on the curve has full Hausdorff dimension. This strengthens a previous result of Beresnevich by removing the condition on weights. Compared with the work of Beresnevich, we study the problem through homogeneous dynamics. It turns out that the problem is closely related to the study of distribution of long pieces of unipotent orbits in homogeneous spaces.
2017 Apr 20

Basic notions: Raz Kupferman (HUJI) - A geometric framework for continuum mechanics

4:00pm to 5:15pm

Abstract: The “geometrization" of mechanics (whether classical, relativistic or quantum) is almost as old as modern differential geometry, and it nowadays textbook material. The formulation of a mathematically-sound theory for the mechanics of continuum media is still a subject of ongoing research. In this lecture I will present a geometric formulation of continuum mechanics, starting with the definition of the fundamental physical observables, e.g., force, deformation, stress and traction. The outcome of this formulation is a generalization of Newton’s "F=ma” equation for continuous media.
2016 Dec 01

Colloquium: Shaul Zemel (Hebrew University) "Actions of Groups on Compact Riemann Surfaces"

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
A compact Riemann surface gives rise to several families of vector spaces, associated to divisors on the Riemann surface. A finite group G of automorphisms acts on the spaces associated with invariant divisors, and a natural question is to characterize the resulting representations of G. We show how a very simple normalization for the invariant divisors can help in answering this question in a very direct manner, and if time permits present some applications.
2015 Dec 24

Colloquium: Yakov Eliashberg (Stanford) ״Crossroads of symplectic rigidity and flexibility״

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
Abstract: The development of flexible and rigid sides of symplectic and contact topology towards each other shaped this subject since its inception, and continues shaping its modern development. In the talk I will discuss the history of this struggle and describe recent breakthroughs on the flexible side.
2016 Nov 17

Colloquium: Boris Zilber (Oxford) " A model-theoretic semantics of algebraic quantum mechanics"

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
We approach the formalism of quantum mechanics from the logician point of view and treat the canonical commutation relations and the conventional calculus based on it as an algebraic syntax of quantum mechanics. We then aim to establish a geometric semantics of this syntax. This leads us to a geometric model, the space of states with the action of time evolution operators, which is a limit of finite models. The finitary nature of the space allows us to give a precise meaning and calculate various classical quantum mechanical quantities.
2015 Dec 03

Colloquium: Ofer Zeitouni (Weizmann), "Extremes of logarithmically correlated fields"

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
Title: Extremes of logarithmically correlated fields Abstract: The general theory of Gaussian processes gives a recipe for estimating the maximum of a random field, which is neither easy to compute nor sharp enough for obtaining the law of the maximum. In recent years, much effort was invested in understanding the extrema of logarithmically correlated fields, both Gaussian and non-Gaussian. I will explain the motivation, and discuss some of the recent results and the techniques that have been involved in proving them.
2016 Mar 10

Colloquium: Nati Linial (Hebrew University) "Higher dimensional permutations"

3:30pm to 4:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
This is part of our ongoing effort to develop what we call "High-dimensional combinatorics". We equate a permutation with its permutation matrix, namely an nxn array of zeros and ones in which every line (row or column) contains exactly one 1. In analogy, a two-dimensional permutation is an nxnxn array of zeros and ones in which every line (row, column or shaft) contains exactly one 1. It is not hard to see that a two-dimensional permutation is synonymous with a Latin square. It should be clear what a d-dimensional permutation is, and those are still very partially understood.
2016 Nov 03

Colloquium: T.N.Venkataramana (Tata Institute) "Monodromy Groups and Arithmetic Groups"

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
To a linear differential equation on the projective line with finitely many points of singularities, is associated a monodromy group; when the singularities are "reguar singular", then the monodromy group gives more or less complete information about the (asymptotics of the ) solutions. The cases of interest are the hypergeometric differential equations, and there is much recent work in this area, centred around a question of Peter Sarnak on the arithmeticity/thin-ness of these monodromy groups. I give a survey of these recent results.
2015 Nov 19

Colloquium: Shmuel Weinberger (Chicago), "The Quantitative challenge to topology"

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
Serre's thesis and its aftermath rolled in a golden age of algebraic topology which led to the impression that we can really understand (necessarily highly nonlinear) maps from one space to another. With the work of Thom on cobordism and Smale on immersions and the Poincare conjecture, a paradigm developed where geometric problems would be solved by reduction to algebraic topological ones.
2016 Dec 22

Colloquium: Itai Ben Yaakov (Université Claude Bernard - Lyon 1) "Full globally valued fields"

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
The Globally Valued Fields (GVF) project is a joint effort with E. Hrushovski to understand (standard and) non-standard global fields - namely fields in which a certain abstraction of the product formula holds. One possible motivation is to give a model-theoretic framework for various asymptotic distribution results in global fields. Formally, a GVF is a field together with a "valuation" in the additive group of an L^1 space, such that the integral of v(a) vanishes for every non-zero a .

Pages