Speaker: Yuval Filmus, Technion
Title: Structure of (almost) low-degree Boolean functions
Abstract:
Boolean function analysis studies (mostly) Boolean functions on {0,1}^n.
Two basic concepts in the field are *degree* and *junta*.
A function has degree d if it can be written as a degree d polynomial.
A function is a d-junta if it depends on d coordinates.
Clearly, a d-junta has degree d.
What about the converse (for Boolean functions)?
What if the Boolean function is only *close* to degree d?
Manchester Building (Hall 2), Hebrew University Jerusalem
Decoupling is a recent development in Fourier analysis. In the late 90s, Tom Wolff proposed a decoupling conjecture and made the first progress on it. The full conjecture had seemed well out of reach until a breakthrough by Jean Bourgain and Ciprian Demeter about five years ago.
Decoupling has applications to problems in PDE and also to analytic number theory. One application involves exponential sums, sums of the form
$$\sum_j e^{2 pi i \omega_j x}.$$
This is not a mathematics talk but it is a talk for mathematicians. Too often, we think of historical mathematicians as only names assigned to theorems. With vignettes and anecdotes, I'll convince you they were also human beings and that, as the Chinese say, "May you live in interesting times" really is a curse. Among the mathematicians with vignettes are Riemann, Newton, Poincare, von Neumann, Kato, Loewner, Krein and Noether.
Let A be an Artin group. It is known that if A is spherical (of finite type) and irreducible (not a direct sum), then it has infinite cyclic center.
It is conjectured that all other irreducible Artin groups have trivial center. I prove this conjecture under a stronger assumption that not being spherical namely, if there is a standard generator which is not contained in any 3-generated spherical standard parabolic subgroup. The main tool is relative presentations of Artin groups.
The Teichmuller space with the Thurston metric and Outer Space with the Lipschitz metric are two examples of spaces with an asymmetric metric i.e. d(x,y)
eq d(y,x). The latter case is also incomplete: There exist Cauchy sequences that do not have a limit. We develop the theory of the completion of an asymmetric space and give lots of examples. Time permitting we will describe the case of Outer Space.
The family of high rank arithmetic groups is a class of groups playing an important role in various areas of mathematics.
It includes SL(n,Z), for n>2 , SL(n, Z[1/p] ) for n>1, their finite index subgroups and many more.
A number of remarkable results about them have been proven including; Mostow rigidity, Margulis Super rigidity and the Quasi-isometric rigidity.
Model theorists define, in structures whose first-order theory is "stable" (i.e. suitably nice), a notion of independence between elements. This notion coincides for example with linear independence when the structure considered is a vector space, and with algebraic independence when it is an algebraically closed field. Sela showed that the theory of the free group is stable. In a joint work with Rizos Sklinos, we give an interpretation of this model theoretic notion of independence in the free group using Grushko and JSJ decompositions.
A free n-Engel group is the relatively free group of the variety of groups with the identical relation [x, y, y,...,y (n times)]=1. Let n>=20. We show that the free Engel group on at least two generators is not locally nilpotent. Our approach to Engel groups combines
The length of a finite group G is defined to be the maximal length of an unrefinable chain of subgroups going from G to 1. This notion was studied by many authors since the 1940s.
Recently there is growing interest also in the depth of G, which is the minimal length of such a chain. Moreover, similar notions were defined and studied for important families of infinite groups, such as connected algebraic groups and connected Lie groups.
The basis of elements of the highest weight representations of affine Lie algebra of type A can be labeled in three different ways, my multipartitions, by piecewise linear paths in the weight space, and by canonical basis elements. The entire infinite basis is recursively generated from the highest weight vector of operators f_i from the Chevalley basis of the affine Lie algebra, and organized into a crystal called a Kashiwara crystal. We describe cases where one can move between the different labelings in a non-recursive fashion, particularly when the crystal has some symmetry.
We establish topological local rigidity for uniform lattices in compactly generated groups, extending the result of Weil from the realm of Lie groups. We generalize the classical local rigidity theorem of Selberg, Calabi and Weil to irreducible uniform lattices in Isom(X) where X is a proper CAT(0) space with no Euclidian factors, not isometric to the hyperbolic plane. We deduce an analog of Wang’s finiteness theorem for certain non-positively curved metric spaces.
This is a joint work with Arie Levit.