2017
Nov
20

# Combinatorics seminar:Sria Louis

11:00am to 12:30pm

## Location:

IIAS Room 130

Speaker 1: Sria Louis
Title: Asymptotically Almost Every 2r-regular Graph has an Internal Partition
Abstract: An internal partition of a graph is a partitioning of the vertex set into two parts such that for every vertex, at least half of its neighbors are on its side. It is easy to notice that such a partition doesn't always exist (e.g. - cliques), though, both the existence and finding of such a partition - are open problems.
Stiebitz (1996), responding to a problem of Thomassen (1983), made a breakthrough in this area, but the question and some interesting generalizations are still open.