This talk will be largely based on a paper by Joseph Shipman with the same title. We will discuss some variations of Fubini type theorems. The focus will be on what is known as "strong Fubini type theorems". Apparently these versions were proved to be independent of ZFC,and our main aim will be to sketch a proof of this result. We will assume basic knowledge in measure theory. Aside from that, the material is rather self contained.
This talk is about three published papers of mine that form my phd. In the first two chapters I focus in the model theory of real closed fields and in the third one I take one step back and investigate in greater genearility dependent theories.
The results are the following:
1. Boundedness criterion for rational functions over generalized semi-algebraic sets in real closed fields.
2. Positivity criterion for polynomials over generalized semi-algebraic sets in real closed valued fields.
In an attempt to classify the geometries arising in strongly minimal sets, Zil'ber conjectured them to split into three different types: Trivial geometries, vector space-like geometries and field-like geometries. Soon after, Hrushovski refuted this conjecture while introducing a new construction method, which has been modified and used a lot ever since.
Speaker: Shira Zerbib Gelaki (MSRI, University of Michigan)
Title: Colorful coverings of polytopes -- the hidden topological truth behind different colorful phenomena
Abstract:
The topological KKMS Theorem is a powerful extension of the Brouwer's Fixed-Point Theorem, which was proved by Shapley in 1973 in the context of
game theory.
We prove a colorful and polytopal generalization of the KKMS Theorem, and show that our theorem implies some seemingly unrelated results in
discrete geometry and combinatorics involving colorful settings.
The functoriality conjecture is a key ingredient in the theory of automorphic forms and the Langlands program. Given two reductive groups G and H, the principle of functoriality asserts that a map r:H^->G^ between their dual complex groups should naturally give rise to a map r*:Rep(H)->Rep(G) between their automorphic representations. In this talk, I will describe the idea of functoriality, its connection to L-functions and recent work on weak functorial lifts to the exceptional group of type G_2.
Abstract: my talk will be devoted to a basic theory of extensions of
complete real-valued fields L/K. Naturally, one says that L is
topologically-algebraically generated over K by a subset S if L lies
in the completion of the algebraic closure of K(S). One can then define
topological analogues of algebraic independence, transcendence degree, etc.
These notions behave much more wierd than their algebraic analogues. For example,
there exist non-invertible continuous K-endomorphisms of the completed
I discuss some class of function of several elliptic variables,
this functions generalize multiple polylogarithms of D. Zagier.
I show some applications of developed formalism.
This is a joint work with F. Brown.
Abstract: Calabi conjectured that the complex Monge-Ampère equation on compact Kaehler manifolds has a unique solution. This was solved by Yau in 1978. In this talk, we present a non-archimedean version on projective Berkovich spaces. In joint work with Burgos, Jell, Künnemann and Martin, we improve a result of Boucksom, Favre and Jonsson in the equicharacteristic 0 case. We give also a result in positive equicharacteristic using test ideals.
Abstract: I will start with a motivation of what algebraic (and model-theoretic) properties
an algebraically closed field of characteristic 1 is expected to have. Then I will explain
how these properties can be obtained by the well-known in model theory Hrushovski's
construction and then formulate very precise axioms that such a field must satisfy.
The axioms have a form of statements about existence of solutions to systems
of equations in terms of a 'multi-dimansional' valuation theory and the validity
Abstract: In the last five years Bridgeland stability has revolutionized
our understanding of the geometry of moduli spaces of sheaves on surfaces,
allowing us to compute ample and effective cones and describe different
birational models. In this talk, I will survey some of my joint work with
Daniele Arcara, Aaron Bertram, Jack Huizenga and Matthew Woolf on the
birational geometry of moduli spaces of sheaves on the plane. I will
describe the ample and effective cones of these moduli spaces,
Many of the main conjectures in Iwasawa theory can be phrased as saying
that the first Chern class of an Iwasawa module is generated by a p-adic
L-series.
In this talk I will describe how higher Chern classes pertain to the higher
codimension behavior of Iwasawa modules. I'll then describe a template
for conjectures which would link such higher Chern classes to elements
in the K-theory of Iwasawa algebras which are constructed from tuples of
Katz p-adic L-series. I will finally describe an instance in which a result of
Using the endoscopic classification
of automorphic forms for unitary groups,
I will prove conjecturally sharp upper
bounds for the growth of Betti numbers
in congruence towers of complex
hyperbolic manifolds. This is
joint work with Sug Woo Shin.
האירוע הזה כולל שיחת וידאו ב-Google Hangouts.
הצטרף: https://plus.google.com/hangouts/_/calendar/ODdkc2JxNmlmbjNhZ2U0ODVvb3E3...
Repeats every week every Thursday until Thu Jun 16 2016 except Thu Apr 14 2016.
12:00pm to 1:15pm
12:00pm to 1:15pm
12:00pm to 1:15pm
12:00pm to 1:15pm
12:00pm to 1:15pm
12:00pm to 1:15pm
12:00pm to 1:15pm
12:00pm to 1:15pm
12:00pm to 1:15pm
12:00pm to 1:15pm
12:00pm to 1:15pm
12:00pm to 1:15pm
12:00pm to 1:15pm
Location:
Ross Building, room 63, Jerusalem, Israel
In his investigation of modular forms of half-integral weight, Shimura established, using Hecke theory, a family of relations between eigneforms of half-integral weight k+1/2 with a given level 4N and character chi and cusp forms of weight 2k and character chi^2.
The level being subsequently determined by Niwa to be at most 2N.
Abstract: Let X be a regular scheme, projective and flat over Spec Z. We
give a conjectural formula in terms of motivic cohomology, singular
cohomology and de Rham cohomology for the special value of the
zeta-function of X at any rational integer. We will explain how this
reduces to the standard formula for the residue of the Dedekind
zeta-function at s = 1.
האירוע הזה כולל שיחת וידאו ב-Google Hangouts.