Eventss

2018 Nov 01

Colloquium: Natan Rubin (BGU) - Crossing Lemmas, touching Jordan curves, and finding large cliques

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
It is a major challenge in Combinatorial Geometry to understand the intersection structure of the edges in a geometric or topological graph, in the Euclidean plane. One of the few "tight" results in this direction is the the Crossing Lemma (due to Ajtai, Chvatal, Newborn, and Szemeredi 1982, and independently Leighton 1983). It provides a relation between the number of edges in the graph and the number of crossings amongst these edges. This line of work led to several Ramsey-type questions of geometric nature. We will focus on two recent advances.
2019 Jun 27

Colloquium Dvoretzky lecture: Assaf Naor(Princeton) - An average John theorem

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem

Abstract: We will prove a sharp average-case variant of a classical embedding theorem of John through the theory of nonlinear spectral gaps. We will use this theorem to provide a new answer to questions of Johnson and Lindenstrauss (1983) and Bourgain (1985) on metric dimension reduction, and explain how it leads to algorithms for approximate nearest neighbor search.
2018 Nov 22

Colloquium: Spencer Unger (HUJI) - A constructive solution to Tarski's circle squaring problem

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
In 1925, Tarski asked whether a disk in R^2 can be partitioned into finitely many pieces which can be rearranged by isometries to form a square of the same area. The restriction of having a disk and a square with the same area is necessary. In 1990, Laczkovich gave a positive answer to the problem using the axiom of choice. We give a completely explicit (Borel) way to break the circle and the square into congruent pieces. This answers a question of Wagon. Our proof has three main components. The first is work of Laczkovich in Diophantine approximation.
2019 Apr 11

Colloquium: Ohad Feldheim - Lattice models of magnetism: from magnets to antiferromagnets

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
Abstract: The Ising model, and its generalisation, the Potts model, are two classical graph-colouring models for magnetism and antiferromagnetism. Albeit their simple formulation, these models were instrumental in explaining many real-world magnetic phenomena and have found various applications in physics, biology and computer science. While our understanding of these models as modeling magnets has been constantly improving since the early twentieth century, little progress was made in treatment of Potts antiferromagnets.
2019 May 30

Colloquium: Alon Nishry (TAU) - Zeros of random power series

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
Abstract: A central problem in complex analysis is how to describe zero sets of power series in terms of their coefficients. In general, it is difficult to obtain precise results for a given function. However, when the function is defined by a power series, whose coefficients are independent random variables, such results can be obtained. Moreover, if the coefficients are complex Gaussians, the results are especially elegant. In particular, in this talk I will discuss some different notions of "rigidity" of the zero sets.
2018 Dec 13

Erdos Lectures: Igor Pak (UCLA) - Counting integer points in polytopes

Lecturer: 

Igor Pak (UCLA)
2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
Given a convex polytope P, what is the number of integer points in P? This problem is of great interest in combinatorics and discrete geometry, with many important applications ranging from integer programming to statistics. From a computational point of view it is hopeless in any dimensions, as the knapsack problem is a special case. Perhaps surprisingly, in bounded dimension the problem becomes tractable. How far can one go? Can one count points in projections of P, finite intersections of such projections, etc?
2019 Mar 28

Colloquium: Alexei Entin (TAU) - Sectional monodromy and the distribution of irreducible polynomials

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
Abstract: Many classical problems on the distribution of prime numbers (and related objects with multiplicative origin) admit function field analogues which can be proved in the large finite field limit. The first results of this type were obtained in the 70's by Swinnerton-Dyer and S. D. Cohen and in recent years there has been a resurgence of activity in this field.
2018 Dec 27

Colloquium: Alexander Yom Din (Caltech) - From analysis to algebra to geometry - an example in representation theory of real groups

2:30pm to 3:30pm

Location: 

Manchester Building (Hall 2), Hebrew University Jerusalem
Representation theory of non-compact real groups, such as SL(2,R), is a fundamental discipline with uses in harmonic analysis, number theory, physics, and more. This theory is analytical in nature, but in the course of the 20th century it was algebraized and geometrized (the key contributions are by Harish-Chandra for the former and by Beilinson-Bernstein for the latter). Roughly and generally speaking, algebraization strips layers from the objects of study until we are left with a bare skeleton, amenable to symbolic manipulation.
2018 Oct 21

Zabrodsky Lecture 2: Cohomological Field Theories

Lecturer: 

Rahul Pandharipande (ETH Zurich)
11:00am to 12:00pm

Location: 

Ross 70
Cohomological Field Theories (CohFTs) were introduced to keep track of the classes on the moduli spaces of curves defined by Gromov-Witten theories and their cousins. I will define CohFTs (following Kontsevich-Manin), explain the classification in the semisimple case of Givental-Teleman, and discuss the application to Pixton's relations which appear in the first lecture.
2018 Oct 18

Zabrodsky Lecture 1: Geometry of the moduli space of curves

Lecturer: 

Rahul Pandharipande (ETH Zurich)
2:30pm to 3:30pm

Location: 

Manchester House, Lecture Hall 2

The moduli space of curves, first appearing in the work of Riemann in the 19th century, plays an important role in geometry. After an introduction to the moduli space, I will discuss recent directions in the study of tautological classes on the moduli space following ideas and conjectures of Mumford, Faber-Zagier, and Pixton. Cohomological Field Theories (CohFTs) play an important role. The talk is about the search for a cohomology calculus for the moduli space of curves parallel to what is known for better understood geometries. My goal is to give a presentation of the progress in the past decade and the current state of the field.

Pages