Eventss

2016 Jun 02

Groups & dynamics: Todor Tsankov (Paris-Diderot): On metrizable universal minimal flows

10:00am to 11:00am

Location: 

Ross building, Hebrew University of Jerusalem, (Room 70)
To every topological group, one can associate a unique universal
minimal flow (UMF): a flow that maps onto every minimal flow of the
group. For some groups (for example, the locally compact ones), this
flow is not metrizable and does not admit a concrete description.
However, for many "large" Polish groups, the UMF is metrizable, can be
computed, and carries interesting combinatorial information. The talk
will concentrate on some new results that give a characterization of
metrizable UMFs of Polish groups. It is based on two papers, one joint
2015 Dec 17

Groups & dynamics: Rene Rühr, Distribution of Shapes of Orthogonal Lattices

10:00am to 11:30am

Location: 

Ross building, Hebrew University of Jerusalem, (Room 70)
To every topological group, one can associate a unique universal
minimal flow (UMF): a flow that maps onto every minimal flow of the
group. For some groups (for example, the locally compact ones), this
flow is not metrizable and does not admit a concrete description.
However, for many "large" Polish groups, the UMF is metrizable, can be
computed, and carries interesting combinatorial information. The talk
will concentrate on some new results that give a characterization of
metrizable UMFs of Polish groups. It is based on two papers, one joint
2017 Dec 12

T&G: Yoel Groman (Columbia), Generation of the Fukaya category of a Lagrangian torus fibration by a section

1:00pm to 2:30pm

Location: 

Room 70A, Ross Building, Jerusalem, Israel
The (wrapped) Fukaya category of a symplectic manifold is a category whose objects are Lagrangian submanifolds and which contains a wealth of information about the symplectic topology. I will discuss the construction of the wrapped Fukaya category for certain completely integrable Hamiltonian systems. These are 2n-dimensional symplectic manifolds carrying a system of n commuting Hamiltonians surjecting onto Euclidean space. This gives rise to a Lagrangian torus fibration with singularities.
2015 Nov 19

Groups & dynamics: Lei Yang (HUJI) "Equidistribution of expanding translates of curves in homogeneous spaces and Diophantine approximation"

10:00am to 11:00am

Location: 

Ross 70
Title: Equidistribution of expanding translates of curves in homogeneous spaces and Diophantine approximation.
Abstract:
We consider an analytic curve $\varphi: I \rightarrow \mathbb{M}(n\times m, \mathbb{R}) \hookrightarrow \mathrm{SL}(n+m, \mathbb{R})$ and embed it into some homogeneous space $G/\Gamma$, and translate it via some diagonal flow
2016 Nov 03

Groups and dynamics - Misha Belolipetsky

10:30am to 11:30am

Location: 

Ross 70
Speaker: Misha Belolipetsky
Title: Arithmetic Kleinian groups generated by elements of finite order
Abstract:
We show that up to commensurability there are only finitely many
cocompact arithmetic Kleinian groups generated by rotations. The proof
is based on a generalised Gromov-Guth inequality and bounds for the
hyperbolic and tube volumes of the quotient orbifolds. To estimate the
hyperbolic volume we take advantage of known results towards Lehmer's
problem. The tube volume estimate requires study of triangulations of
2015 Dec 17

Groups & dynamics: Robert Hough (IAS) - Mixing and cut-off on cyclic groups

12:00pm to 1:00pm

Location: 

Einstein 110
Consider a sequence of random walks on $\mathbb{Z}/p\mathbb{Z}$ with symmetric generating sets $A= A(p)$. I will describe known and new results regarding the mixing time and cut-off. For instance, if the sequence $|A(p)|$ is bounded then the cut-off phenomenon does not occur, and more precisely I give a lower bound on the size of the cut-off window in terms of $|A(p)|$. A natural conjecture from random walk on a graph is that the total variation mixing time is bounded by maximum degree times diameter squared.
2015 Nov 05

Groups & Dynamics : Ilya Khayutin (HUJI)

9:45am to 11:00am

Location: 

Manchester building, Hebrew University of Jerusalem, (Room 209)
Title: Arithmetic of Double Torus Quotients and the Distribution of Periodic Torus Orbits
Abstract:
In this talk I will describe some new arithmetic invariants for pairs of torus orbits on inner forms of PGLn and SLn. These invariants allow us to significantly strengthen results towards the equidistribution of packets of periodic torus orbits on higher rank S-arithmetic quotients. An important aspect of our method is that it applies to packets of periodic orbits of maximal tori which are only partially split.
2017 May 25

Basic notions: Ehud de Shalit - The Loxton - van der Poorten conjecture

4:00pm to 5:00pm

Abstract: Adamczewski and Bell proved in the 2013 the Loxton - van der Poorten
conjecture. It says the following. Let f be a Laurent power series (with complex
coefficients) and let \sigma_p be the operator substituting x^p for x in f. Suppose that f satisfies a homogenous polynomial equation in the operator \sigma_p with
coefficients which are rational functions, and a similar equation in the operator \sigma_q where p and q are multiplicatively independent natural numbers. Then f is a rational function.
2015 Nov 11

Eshnav: Karim Adiprasito (HUJI) "Combinatorial geometry"

Lecturer: 

Karim Adiprasito
6:00pm to 7:00pm

Location: 

Math 2 (Manchester building)
Title: Combinatorial Geometry
Abstract:
Matroids or (combinatorial) geometries are natural abstractions of
the concept of linear and algebraic independence over fields, were defined
by Whitney nearly a century ago. Since then, they have become a crucial tool
in model theory, graph coloring, noncommutative geometty and the study of
characteristic classes. Quite amazingly, it was recently shown that matroids
satisy deep results classically associated to algebraic varieties, something
that was not expected in this generality.
2017 May 18

Basic notions: Ehud de Shalit - The Loxton - van der Poorten conjecture

4:00pm to 5:00pm

Abstract: Adamczewski and Bell proved in the 2013 the Loxton - van der Poorten
conjecture. It says the following. Let f be a Laurent power series (with complex
coefficients) and let \sigma_p be the operator substituting x^p for x in f. Suppose that f satisfies a homogenous polynomial equation in the operator \sigma_p with
coefficients which are rational functions, and a similar equation in the operator \sigma_q where p and q are multiplicatively independent natural numbers. Then f is a rational function.

Pages