2018 Jan 23

Dynamics Lunch: Naomi Feldheim (Weizmann) "How to compute the expected number of zeroes of a random function"

12:00pm to 1:00pm


Manchester building lobby

This talk is devoted to the "Kac-Rice formula", which is an explicit way to compute
the expected number of zeroes of a random series with independent Gaussian coefficients.
We will discuss the original proofs of Kac and Rice (1940's),
an elegant geometrical proof due to Edelman and Kostlan (1995), some interesting examples,
and extensions to complex zeroes and eigenvalues of random matrices.
2018 Jan 09

Dynamics Lunch: Raimundo Briceno (TAU) "A Breiman type theorem for Gibbs measures"

12:00pm to 1:00pm

We will review a Breiman type theorem for Gibbs measures due to Gurevich and Tempelman. For a translation invariant Gibbs measure on a suitable translation invariant configuration set X \subset S^G, where G is an amenable group and S is a finite set, we will prove the convergence of the Shannon-McMillan-Breiman ratio on a specific subset of "generic" configurations. Provided that the above Gibbs measure exists, we also prove the convergence in the definition of pressure and the fact that this Gibbs measure is an equilibrium state.
2017 Apr 27

Basic notions: Raz Kupferman

4:00pm to 5:15pm

The “geometrization" of mechanics (whether classical, relativistic or quantum) is almost as old as modern differential geometry, and it nowadays textbook material.