Consider a real Gaussian stationary process, either on Z or on R. That is,
a stochastic process, invariant under translations, whose finite marginals
are centered multi-variate Gaussians. The persistence of such a process on
[0,N] is the probability that it remains positive throughout this interval.
The relation between the decay of the persistence as N tends to infinity
and the covariance function of the process has been investigated since the
1950s with motivations stemming from probability, engineering and
Manchester building, Hebrew University of Jerusalem, (Room 209)
I describe a language and set-up for proving monotonicity of entropy for families of interval maps which are defined locally. This can be seen as a local version of Thurston's algorithm. We apply this approach to prove the monotonicity and related results for families that are
not covered by other methods (with flat critical point, piecewise linear, Lorenz-type, Arnold family and others) . Joint work with Weixiao Shen and Sebastian van Strien.
It is an open question whether the fractional parts of nonlinear polynomials at integers have the same fine-scale statistics as a Poisson point process. We provide explicit Diophantine conditions on the coefficients of degree 2 polynomials under which the limit of an averaged pair correlation density is consistent with the Poisson distribution, using a recent effective Ratner equidistribution result on the space of affine lattices due to Strömbergsson. This is joint work with Jens Marklof.
Manchester building, Hebrew University of Jerusalem, (Room 209)
It is well known that for almost every x in (0,1) its orbit under the Gauss map, namely T(x)=1/x-[1/x], equidistributes with respect to the Gauss-Kuzmin measure. This claim is not true for all x, and in particular it is not true for rational numbers which have finite "orbits" which terminate in 0. In order to still have some equidistribution, we instead group
together the orbits corresponding to p/q when q is fixed and (p,q)=1 and ask whether these finite sets equidistribute as q goes to infinity.
Manchester building, Hebrew University of Jerusalem, (Room 209)
Given a probability measure mu on the space of 2x2 matrices, there is, under mild conditions, a unique measure nu on the space of lines which is stationary for mu. This measure is called the Furstenberg measure of mu, and is important in many contexts, from the study of random matrix products to recent work on self-affine sets and measures. Of particular importance are the smoothness and dimension of the Furstenberg measure. In this talk I will discuss joint work with Boris Solomyak in which we adapt methods from
Abstract: I will describe joint work in progress with Aaron Brown, Federico Rodriguez-Hertz and Simion Filip. Our aim is to find some analogue, in the context of smooth dynamics, of Ratner's theorems on unipotent flows. This would be a (partial) generalization of the results of Benoist-Quint and my work with Elon Lindenstrauss in the homogeneous setting, the results of Brown and Rodriguez-Hertz in dimension 2, and the my results with Maryam Mirzakhani in the setting of Teichmuller dynamics.
Manchester building, Hebrew University of Jerusalem, (Room 209)
A minimal representative for a dynamical system is a system that has the simplest possible dynamics in its topological equivalence class. This is very much related to "dynamical forcing": when existence of certain periodic orbits forces existence of others. This is quite useful in the analysis of chaotic systems. I'll give examples of minimal representatives
Manchester building, Hebrew University of Jerusalem, (Room 209)
We consider Bourgain's sparse ergodic theorem for systems where quantitative mixing estimates are present. Focusing on the case of the horocyclic flow, we show how to use such
estimates in order to bound the dimension of the exceptional set, providing evidence towards conjectures by N. Shah, G. Margulis and P. Sarnak. Moreover we show that there exists a bound which is independent from the spectral gap. The proof uses techniques from homogeneous dynamics, automorphic representations and number theory.
Consider a process in which points are assigned uniformly and independently at random on the interval [0,1]. It is a classical observation that after N points were assigned, the typical discrepancy of the empirical distribution, i.e., the maximum difference between the proportion of points on any interval and the length of that interval, is of order 1/sqrt{N}. Now consider a similar online process in which at every step an overseer is allowed to choose between two independent, uniformly chosen points on [0,1].
In ergodic dynamical systems almost every point is generic. Many times it is interesting to understand how large is the set of non-generic points. In this talk I will present a criterion for a set to have a nonempty intersection with every “regular fractal". We then apply this criterion to
show that the set of badly approximable vectors with weights intersects every regular fractal, and put it in the context of diagonalizable actions on homogeneous spaces.
This talk is based on a joint work with Dzmitry Badziahin, Stephen Harrap and David Simmons.
The Schmidt Subspace Theorem, its S-arithmetic extension by Schlickewei, and subsequent (rather significant) refinements are highlights of the theory of Diophantine applications and have many applications, some quite unexpected.